Suppr超能文献

利用长斯托克斯位移荧光染料增强免疫荧光显微镜的多重标记

Enhanced Multiplexing of Immunofluorescence Microscopy Using a Long-Stokes-Shift Fluorophore.

机构信息

Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.

出版信息

Curr Protoc. 2021 Aug;1(8):e214. doi: 10.1002/cpz1.214.

Abstract

Immunofluorescence labeling and microscopy offer a highly specific means to visualize proteins or other molecular species in a sample by labeling target antigens with fluorescent probes. These fluorescent probes can then be visualized using a fluorescence microscope, allowing their relative spatial relationships to be determined. Due to spectral overlap of common fluorophores, however, it can be challenging to analyze more than three antigens in a single sample with standard imaging approaches. This article describes multiplexed labeling and imaging of four target antigens through the use of a long-Stokes-shift fluorophore-a fluorophore with an unusually large gap between its excitation and emission maxima-in tandem with three conventional fluorophores. This combination allows for multiplexed imaging of four antigens in a single sample with excellent spectral discrimination suitable for sensitive analyses using standard imaging hardware. Particular advantages of this approach are its flexibility in terms of target antigens and the lack of any specialized procedures, reagents, or equipment beyond the commercially available labeling reagent coupled to the long-Stokes-shift fluorophore. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Four-probe immunofluorescence labeling Basic Protocol 2: Four-probe immunofluorescence imaging.

摘要

免疫荧光标记和显微镜技术通过用荧光探针标记靶抗原,提供了一种在样本中可视化蛋白质或其他分子种类的高度特异性方法。然后可以使用荧光显微镜观察这些荧光探针,从而确定它们的相对空间关系。然而,由于常见荧光团的光谱重叠,使用标准成像方法在单个样本中分析超过三个抗原可能具有挑战性。本文通过使用长斯托克斯位移荧光团(一种激发和发射最大值之间存在异常大间隙的荧光团)与三种常规荧光团结合,描述了对四个靶抗原进行的多重标记和成像。这种组合允许在单个样本中对四个抗原进行多重成像,具有出色的光谱分辨率,适合使用标准成像硬件进行灵敏分析。该方法的特别优点是其在靶抗原方面的灵活性,并且除了与长斯托克斯位移荧光团偶联的市售标记试剂之外,不需要任何特殊的程序、试剂或设备。

相似文献

2
A synergistic strategy to develop photostable and bright dyes with long Stokes shift for nanoscopy.
Nat Commun. 2022 Apr 27;13(1):2264. doi: 10.1038/s41467-022-29547-3.
3
Choosing the Probe for Single-Molecule Fluorescence Microscopy.
Int J Mol Sci. 2022 Nov 29;23(23):14949. doi: 10.3390/ijms232314949.
4
Varied Length Stokes Shift BODIPY-Based Fluorophores for Multicolor Microscopy.
Sci Rep. 2018 Mar 15;8(1):4590. doi: 10.1038/s41598-018-22892-8.
5
Cyclic Immunofluorescence (CycIF), A Highly Multiplexed Method for Single-cell Imaging.
Curr Protoc Chem Biol. 2016 Dec 7;8(4):251-264. doi: 10.1002/cpch.14.
6
Photoactivatable Large Stokes Shift Fluorophores for Multicolor Nanoscopy.
J Am Chem Soc. 2023 Jan 25;145(3):1530-1534. doi: 10.1021/jacs.2c12567. Epub 2023 Jan 10.
10
Rapid Sequential in Situ Multiplexing with DNA Exchange Imaging in Neuronal Cells and Tissues.
Nano Lett. 2017 Oct 11;17(10):6131-6139. doi: 10.1021/acs.nanolett.7b02716. Epub 2017 Oct 2.

引用本文的文献

1
Imaging Techniques in Pharmacological Precision Medicine.
Handb Exp Pharmacol. 2023;280:213-235. doi: 10.1007/164_2023_641.

本文引用的文献

1
SEQUIN: An imaging and analysis platform for quantification and characterization of synaptic structures in mouse.
STAR Protoc. 2021 Jan 13;2(1):100268. doi: 10.1016/j.xpro.2020.100268. eCollection 2021 Mar 19.
3
Robust blind spectral unmixing for fluorescence microscopy using unsupervised learning.
PLoS One. 2019 Dec 2;14(12):e0225410. doi: 10.1371/journal.pone.0225410. eCollection 2019.
4
Light-sheet microscopy in the near-infrared II window.
Nat Methods. 2019 Jun;16(6):545-552. doi: 10.1038/s41592-019-0398-7. Epub 2019 May 13.
5
Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors.
Chem Soc Rev. 2015 Jul 21;44(14):4792-834. doi: 10.1039/c4cs00532e.
6
Deep molecular diversity of mammalian synapses: why it matters and how to measure it.
Nat Rev Neurosci. 2012 May 10;13(6):365-79. doi: 10.1038/nrn3170.
7
Laser-induced autofluorescence measurements on brain tissues.
Anat Rec (Hoboken). 2009 Dec;292(12):2013-22. doi: 10.1002/ar.21034.
8
Blind source separation techniques for the decomposition of multiply labeled fluorescence images.
Biophys J. 2009 May 6;96(9):3791-800. doi: 10.1016/j.bpj.2008.10.068.
9
Quantum dots versus organic dyes as fluorescent labels.
Nat Methods. 2008 Sep;5(9):763-75. doi: 10.1038/nmeth.1248.
10
Spectral imaging and linear unmixing in light microscopy.
Adv Biochem Eng Biotechnol. 2005;95:245-65. doi: 10.1007/b102216.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验