Suppr超能文献

一种经济实惠的图像分析平台,用于在显微镜观察期间加速气孔表型分析。

An Affordable Image-Analysis Platform to Accelerate Stomatal Phenotyping During Microscopic Observation.

作者信息

Toda Yosuke, Tameshige Toshiaki, Tomiyama Masakazu, Kinoshita Toshinori, Shimizu Kentaro K

机构信息

Japan Science and Technology Agency, Saitama, Japan.

Phytometrics co., ltd., Shizuoka, Japan.

出版信息

Front Plant Sci. 2021 Jul 29;12:715309. doi: 10.3389/fpls.2021.715309. eCollection 2021.

Abstract

Recent technical advances in the computer-vision domain have facilitated the development of various methods for achieving image-based quantification of stomata-related traits. However, the installation cost of such a system and the difficulties of operating it on-site have been hurdles for experimental biologists. Here, we present a platform that allows real-time stomata detection during microscopic observation. The proposed system consists of a deep neural network model-based stomata detector and an upright microscope connected to a USB camera and a graphics processing unit (GPU)-supported single-board computer. All the hardware components are commercially available at common electronic commerce stores at a reasonable price. Moreover, the machine-learning model is prepared based on freely available cloud services. This approach allows users to set up a phenotyping platform at low cost. As a proof of concept, we trained our model to detect dumbbell-shaped stomata from wheat leaf imprints. Using this platform, we collected a comprehensive range of stomatal phenotypes from wheat leaves. We confirmed notable differences in stomatal density () between adaxial and abaxial surfaces and in stomatal size () between wheat-related species of different ploidy. Utilizing such a platform is expected to accelerate research that involves all aspects of stomata phenotyping.

摘要

计算机视觉领域最近的技术进步推动了各种用于基于图像对气孔相关性状进行量化的方法的发展。然而,此类系统的安装成本以及在现场操作的困难一直是实验生物学家面临的障碍。在此,我们展示了一个平台,该平台可在显微镜观察期间实现实时气孔检测。所提出的系统由基于深度神经网络模型的气孔检测器以及连接到USB相机和图形处理单元(GPU)支持的单板计算机的直立显微镜组成。所有硬件组件在普通电子商务商店均可以合理价格购得。此外,机器学习模型基于免费的云服务构建。这种方法允许用户低成本搭建一个表型分析平台。作为概念验证,我们训练模型从小麦叶片印记中检测哑铃形气孔。利用这个平台,我们收集了小麦叶片全面的气孔表型。我们证实了小麦叶片正反两面的气孔密度()以及不同倍性小麦相关物种之间的气孔大小()存在显著差异。利用这样一个平台有望加速涉及气孔表型分析各个方面的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a937/8358771/0e56ff5a7799/fpls-12-715309-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验