Anggriani Nursanti, Beay Lazarus Kalvein
Department of Mathematics, Universitas Padjadjaran, Jln. Raya Bandung-Sumedang Km. 21 Jatinangor, Kab. Sumedang 45363 Jawa Barat, Indonesia.
Post Doctoral Program, Department of Mathematics, Universitas Padjadjaran, Jln. Raya Bandung-Sumedang Km. 21 Jatinangor, Kab. Sumedang 45363 Jawa Barat, Indonesia.
Results Phys. 2022 May;36:105378. doi: 10.1016/j.rinp.2022.105378. Epub 2022 Mar 5.
This work examines the impacts of self-isolation and hospitalization on the population dynamics of the Corona-Virus Disease. We developed a new nonlinear deterministic model eight classes compartment, with self-isolation and hospitalized being the most effective tools. There are (Susceptible , Exposed , Asymptomatic infected , Symptomatic infected , Self-isolation , Hospitalized , Healed , and Susceptible individuals previously infected ). The expression of basic reproduction number comes from the next-generation matrix method. With suitably constructed Lyapunov functions, the global asymptotic stability of the non-endemic equilibria for and that of endemic equilibria for are established. The computed value of proves the endemic level of the epidemic. The outbreak will lessen if a policy is enforced like self-isolation and hospitalization. This is related to those policies that can reduce the number of direct contacts between infected and susceptible individuals or waning immunity individuals. Various simulations are presented to appreciate self-isolation at home and hospitalized strategies if applied sensibly. By performing a global sensitivity analysis, we can obtain parameter values that affect the model through a combination of Latin Hypercube Sampling and Partial Rating Correlation Coefficients methods to determine the parameters that affect the number of reproductions and the increase in the number of COVID cases. The results obtained show that the rate of self-isolation at home and the rate of hospitalism have a negative relationship. On the other hand, infections will decrease when the two parameters increase. From the sensitivity of the results, we formulate a control model using optimal control theory by considering two control variables. The result shows that the control strategies minimize the spread of the COVID infection in the population.
这项工作研究了自我隔离和住院对冠状病毒病种群动态的影响。我们开发了一个新的八类 compartment 非线性确定性模型,其中自我隔离和住院是最有效的手段。存在(易感者、暴露者、无症状感染者、有症状感染者、自我隔离者、住院者、康复者以及先前感染过的易感个体)。基本再生数的表达式来自下一代矩阵方法。通过适当构造李雅普诺夫函数,建立了非流行平衡点对于 的全局渐近稳定性以及流行平衡点对于 的全局渐近稳定性。计算得到的 值证明了疫情的流行程度。如果实施自我隔离和住院等政策,疫情爆发将会减轻。这与那些能够减少感染者与易感个体或免疫力下降个体之间直接接触数量的政策有关。给出了各种模拟结果,以说明如果合理应用在家自我隔离和住院策略的情况。通过进行全局敏感性分析,我们可以通过拉丁超立方抽样和偏等级相关系数方法的组合来获得影响模型的参数值,以确定影响繁殖数量和新冠病例数量增加的参数。得到的结果表明,在家自我隔离率和住院率呈负相关。另一方面,当这两个参数增加时,感染将会减少。从结果的敏感性出发,我们通过考虑两个控制变量,利用最优控制理论制定了一个控制模型。结果表明,控制策略可使新冠感染在人群中的传播最小化。