Institute of Graduate Studies & Research, Alexandria University Egypt.
High Institute of Public Health, Alexandria University, Alexandria, Egypt.
J Prim Care Community Health. 2021 Jan-Dec;12:21501327211041208. doi: 10.1177/21501327211041208.
Corona virus diseases 2019 (COVID-19) pandemic is an extraordinary threat with significant implications in all aspects of human life; therefore, it represents the most immediate challenge for the countries all over the world. This study, hence, is intended to identify the best GIS-based model that can explore, quantify, and model the determinants of COVID-19 incidence and fatality. For this purpose, geospatial models were developed to estimate COVID-19 incidence and fatality rates in Africa, up to 16th of August 2020 at the national level. The models involved Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR) analysis using ArcGIS. Spatial autocorrelation analysis recorded a positive spatial autocorrelation in COVID-19 incidence (Moran index 0.16, = 0.1) and fatality (Moran index 0.26, = 0.01) rates within different African countries. GWR model had higher than OLS for prediction of incidence and mortality (58% vs 45% and 55% vs 53%). The main predictors of COVID-19 incidence rate were overcrowding, health expenditure, HIV infections, air pollution, and BCG vaccination (mean β = 3.10, 1.66, 0.01, 3.79, and -66.60 respectively, < 0.05). The main determinants of COVID-19 fatality were prevalence of bronchial asthma, tobacco use, poverty, aging, and cardiovascular diseases fatality (mean β = 0.00162, 0.00004, -0.00025, -0.00144, and -0.00027 respectively, < 0.05). Application of the suggested model can assist in guiding intervention strategies, particularly at the local and community level whenever the data on COVID-19 cases and predictors variables are available.
2019 年冠状病毒病(COVID-19)大流行是对人类生活各个方面都具有重大影响的非凡威胁;因此,它代表了世界各国最直接的挑战。因此,本研究旨在确定基于 GIS 的最佳模型,以探索、量化和模拟 COVID-19 发病率和死亡率的决定因素。为此,使用 ArcGIS 开发了地理空间模型,以估计截至 2020 年 8 月 16 日非洲各国的 COVID-19 发病率和死亡率。该模型涉及普通最小二乘法(OLS)和地理加权回归(GWR)分析。空间自相关分析记录了不同非洲国家 COVID-19 发病率(Moran 指数 0.16, = 0.1)和死亡率(Moran 指数 0.26, = 0.01)的正空间自相关。GWR 模型比 OLS 更适合预测发病率和死亡率(58%比 45%和 55%比 53%)。COVID-19 发病率的主要预测因子是人口过剩、卫生支出、艾滋病毒感染、空气污染和卡介苗接种(平均 β = 3.10、1.66、0.01、3.79 和-66.60, < 0.05)。COVID-19 死亡率的主要决定因素是支气管哮喘、吸烟、贫困、老龄化和心血管疾病死亡率的流行(平均 β = 0.00162、0.00004、-0.00025、-0.00144 和-0.00027, < 0.05)。只要有 COVID-19 病例和预测变量数据,该模型的应用可以帮助指导干预策略,特别是在地方和社区层面。