Suppr超能文献

通过多聚(U)聚合酶 Cid1 合成修饰核苷酸聚合物:在纳米孔上直接 RNA 测序的应用。

Synthesis of modified nucleotide polymers by the poly(U) polymerase Cid1: application to direct RNA sequencing on nanopores.

机构信息

Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA.

Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA.

出版信息

RNA. 2021 Dec;27(12):1497-1511. doi: 10.1261/rna.078898.121. Epub 2021 Aug 26.

Abstract

Understanding transcriptomes requires documenting the structures, modifications, and abundances of RNAs as well as their proximity to other molecules. The methods that make this possible depend critically on enzymes (including mutant derivatives) that act on nucleic acids for capturing and sequencing RNA. We tested two 3' nucleotidyl transferases, poly(A) polymerase and Cid1, for the ability to add base and sugar modified rNTPs to free RNA 3' ends, eventually focusing on Cid1. Although unable to polymerize ΨTP or 1meΨTP, Cid1 can use 5meUTP and 4thioUTP. Surprisingly, Cid1 can use inosine triphosphate to add poly(I) to the 3' ends of a wide variety of RNA molecules. Most poly(A) mRNAs efficiently acquire a uniform tract of about 50 inosine residues from Cid1, whereas non-poly(A) RNAs acquire longer, more heterogeneous tails. Here we test these activities for use in direct RNA sequencing on nanopores, and find that Cid1-mediated poly(I)-tailing permits detection and quantification of both mRNAs and non-poly(A) RNAs simultaneously, as well as enabling the analysis of nascent RNAs associated with RNA polymerase II. Poly(I) produces a different current trace than poly(A), enabling recognition of native RNA 3' end sequence lost by in vitro poly(A) addition. Addition of poly(I) by Cid1 offers a broadly useful alternative to poly(A) capture for direct RNA sequencing on nanopores.

摘要

理解转录组需要记录 RNA 的结构、修饰和丰度,以及它们与其他分子的接近程度。实现这一目标的方法严重依赖于作用于核酸以捕获和测序 RNA 的酶(包括突变衍生物)。我们测试了两种 3'核苷酸转移酶,多聚(A)聚合酶和 Cid1,以确定它们是否能够将碱基和糖修饰的 rNTP 添加到游离 RNA 3'末端,最终专注于 Cid1。尽管 Cid1 不能聚合 ΨTP 或 1meΨTP,但它可以使用 5meUTP 和 4 硫代 UTP。令人惊讶的是,Cid1 可以使用肌苷三磷酸将聚(I)添加到各种 RNA 分子的 3'末端。大多数多聚(A)mRNA 有效地从 Cid1 获得大约 50 个肌苷残基的均匀片段,而非多聚(A)RNA 获得更长、更异质的尾部。在这里,我们测试了这些活性在纳米孔直接 RNA 测序中的应用,发现 Cid1 介导的聚(I)加尾允许同时检测和定量 mRNAs 和非多聚(A)RNA,并且能够分析与 RNA 聚合酶 II 相关的新生 RNA。聚(I)产生的电流迹不同于聚(A),能够识别体外聚(A)添加导致的天然 RNA 3'末端序列丢失。Cid1 加聚(I)为纳米孔直接 RNA 测序提供了一种广泛有用的替代聚(A)捕获方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51c3/8594468/154d3ff6a855/1497f01.jpg

相似文献

2
Efficient RNA polyuridylation by noncanonical poly(A) polymerases.
Mol Cell Biol. 2007 May;27(10):3612-24. doi: 10.1128/MCB.02209-06. Epub 2007 Mar 12.
3
The Cid1 family of non-canonical poly(A) polymerases.
Yeast. 2006 Oct 15;23(13):991-1000. doi: 10.1002/yea.1408.
4
A family of poly(U) polymerases.
RNA. 2007 Jun;13(6):860-7. doi: 10.1261/rna.514007. Epub 2007 Apr 20.
5
The Cid1 poly(U) polymerase.
Biochim Biophys Acta. 2008 Apr;1779(4):286-94. doi: 10.1016/j.bbagrm.2008.03.003. Epub 2008 Mar 19.
6
A critical switch in the enzymatic properties of the Cid1 protein deciphered from its product-bound crystal structure.
Nucleic Acids Res. 2014 Mar;42(5):3372-80. doi: 10.1093/nar/gkt1278. Epub 2013 Dec 9.
7
Cytoplasmic poly(A) polymerases mediate cellular responses to S phase arrest.
Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12079-84. doi: 10.1073/pnas.192467799. Epub 2002 Sep 6.
8
Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity.
Nucleic Acids Res. 2012 Oct;40(19):9815-24. doi: 10.1093/nar/gks740. Epub 2012 Aug 9.
9
Structural plasticity of Cid1 provides a basis for its distributive RNA terminal uridylyl transferase activity.
Nucleic Acids Res. 2015 Mar 11;43(5):2968-79. doi: 10.1093/nar/gkv122. Epub 2015 Feb 20.
10
Simple methods for the 3' biotinylation of RNA.
RNA. 2014 Mar;20(3):421-7. doi: 10.1261/rna.042986.113. Epub 2014 Jan 21.

引用本文的文献

2
Broad variation in response of individual introns to splicing inhibitors in a humanized yeast strain.
bioRxiv. 2023 Nov 13:2023.10.05.560965. doi: 10.1101/2023.10.05.560965.
3
Pervasive effects of RNA degradation on Nanopore direct RNA sequencing.
NAR Genom Bioinform. 2023 Jun 9;5(2):lqad060. doi: 10.1093/nargab/lqad060. eCollection 2023 Jun.
4
Towards the controlled enzymatic synthesis of LNA containing oligonucleotides.
Front Chem. 2023 Apr 27;11:1161462. doi: 10.3389/fchem.2023.1161462. eCollection 2023.
5
Nanoblot: an R-package for visualization of RNA isoforms from long-read RNA-sequencing data.
RNA. 2023 Aug;29(8):1099-1107. doi: 10.1261/rna.079505.122. Epub 2023 May 3.
6
Nano3P-seq: transcriptome-wide analysis of gene expression and tail dynamics using end-capture nanopore cDNA sequencing.
Nat Methods. 2023 Jan;20(1):75-85. doi: 10.1038/s41592-022-01714-w. Epub 2022 Dec 19.
7
Modification mapping by nanopore sequencing.
Front Genet. 2022 Oct 28;13:1037134. doi: 10.3389/fgene.2022.1037134. eCollection 2022.
8
Advances in nanopore direct RNA sequencing.
Nat Methods. 2022 Oct;19(10):1160-1164. doi: 10.1038/s41592-022-01633-w.
9
The Epitranscriptome in miRNAs: Crosstalk, Detection, and Function in Cancer.
Genes (Basel). 2022 Jul 21;13(7):1289. doi: 10.3390/genes13071289.

本文引用的文献

1
RNA modifications detection by comparative Nanopore direct RNA sequencing.
Nat Commun. 2021 Dec 10;12(1):7198. doi: 10.1038/s41467-021-27393-3.
2
Structure and mechanism of polynucleotide phosphorylase.
RNA. 2021 Jun 4;27(8):959-69. doi: 10.1261/rna.078822.121.
3
Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing.
Nat Biotechnol. 2021 Oct;39(10):1278-1291. doi: 10.1038/s41587-021-00915-6. Epub 2021 May 13.
4
Revealing nascent RNA processing dynamics with nano-COP.
Nat Protoc. 2021 Mar;16(3):1343-1375. doi: 10.1038/s41596-020-00469-y. Epub 2021 Jan 29.
5
Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases.
Wiley Interdiscip Rev RNA. 2021 Mar;12(2):e1622. doi: 10.1002/wrna.1622. Epub 2020 Jul 22.
6
poly(UG)-tailed RNAs in genome protection and epigenetic inheritance.
Nature. 2020 Jun;582(7811):283-288. doi: 10.1038/s41586-020-2323-8. Epub 2020 May 20.
7
Nanopore native RNA sequencing of a human poly(A) transcriptome.
Nat Methods. 2019 Dec;16(12):1297-1305. doi: 10.1038/s41592-019-0617-2. Epub 2019 Nov 18.
8
Nascent RNA analyses: tracking transcription and its regulation.
Nat Rev Genet. 2019 Dec;20(12):705-723. doi: 10.1038/s41576-019-0159-6. Epub 2019 Aug 9.
9
Performance of neural network basecalling tools for Oxford Nanopore sequencing.
Genome Biol. 2019 Jun 24;20(1):129. doi: 10.1186/s13059-019-1727-y.
10
Reading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencing.
PLoS One. 2019 May 16;14(5):e0216709. doi: 10.1371/journal.pone.0216709. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验