Suppr超能文献

天门冬氨酸供应限制造血再生过程中的造血干细胞功能。

Aspartate availability limits hematopoietic stem cell function during hematopoietic regeneration.

机构信息

Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, North Rhine-Westphalia 53115, Germany.

出版信息

Cell Stem Cell. 2021 Nov 4;28(11):1982-1999.e8. doi: 10.1016/j.stem.2021.07.011. Epub 2021 Aug 26.

Abstract

The electron transport chain promotes aspartate synthesis, which is required for cancer cell proliferation. However, it is unclear whether aspartate is limiting in normal stem cells. We found that mouse hematopoietic stem cells (HSCs) depend entirely on cell-autonomous aspartate synthesis, which increases upon HSC activation. Overexpression of the glutamate/aspartate transporter, Glast, or deletion of glutamic-oxaloacetic transaminase 1 (Got1) each increased aspartate levels in HSCs/progenitor cells and increased the function of HSCs but not colony-forming progenitors. Conversely, deletion of Got2 reduced aspartate levels and the function of HSCs but not colony-forming progenitors. Deletion of Got1 and Got2 eliminated HSCs. Isotope tracing showed aspartate was used to synthesize asparagine and purines. Both contributed to increased HSC function as deletion of asparagine synthetase or treatment with 6-mercaptopurine attenuated the increased function of GLAST-overexpressing HSCs. HSC function is thus limited by aspartate, purine, and asparagine availability during hematopoietic regeneration.

摘要

电子传递链促进天冬氨酸的合成,这是癌细胞增殖所必需的。然而,目前尚不清楚天冬氨酸在正常干细胞中是否受到限制。我们发现,小鼠造血干细胞(HSCs)完全依赖于细胞自主的天冬氨酸合成,这种合成在 HSC 激活时增加。谷氨酸/天冬氨酸转运蛋白 Glast 的过表达或谷氨酸草酰乙酸转氨酶 1(Got1)的缺失都增加了 HSCs/祖细胞中天冬氨酸的水平,并增加了 HSCs 的功能,但不增加集落形成祖细胞的功能。相反,Got2 的缺失减少了 HSCs 中的天冬氨酸水平和功能,但不减少集落形成祖细胞。Got1 和 Got2 的缺失消除了 HSCs。同位素示踪表明天冬氨酸用于合成天冬酰胺和嘌呤。由于天冬酰胺合成酶的缺失或 6-巯基嘌呤的处理都削弱了 GLAST 过表达 HSCs 功能的增加,因此这两者都有助于增加 HSC 的功能。因此,在造血再生过程中,HSC 的功能受到天冬氨酸、嘌呤和天冬酰胺可用性的限制。

相似文献

1
Aspartate availability limits hematopoietic stem cell function during hematopoietic regeneration.
Cell Stem Cell. 2021 Nov 4;28(11):1982-1999.e8. doi: 10.1016/j.stem.2021.07.011. Epub 2021 Aug 26.
3
HPRT and Purine Salvaging Are Critical for Hematopoietic Stem Cell Function.
Stem Cells. 2019 Dec;37(12):1606-1614. doi: 10.1002/stem.3087. Epub 2019 Oct 12.
8
Functional and molecular profiling of hematopoietic stem cells during regeneration.
Exp Hematol. 2023 Nov;127:40-51. doi: 10.1016/j.exphem.2023.08.010. Epub 2023 Sep 4.
9
Interleukin-33 regulates hematopoietic stem cell regeneration after radiation injury.
Stem Cell Res Ther. 2019 Apr 18;10(1):123. doi: 10.1186/s13287-019-1221-1.

引用本文的文献

1
GOT2: a moonlighting enzyme at the crossroads of cancer metabolism and theranostics.
Front Immunol. 2025 Aug 6;16:1626914. doi: 10.3389/fimmu.2025.1626914. eCollection 2025.
2
Succinate Dehydrogenase loss causes cascading metabolic effects that impair pyrimidine biosynthesis.
bioRxiv. 2025 Feb 19:2025.02.18.638948. doi: 10.1101/2025.02.18.638948.
4
Dietary cysteine enhances intestinal stemness via CD8 T cell-derived IL-22.
bioRxiv. 2025 Feb 16:2025.02.15.638423. doi: 10.1101/2025.02.15.638423.
5
The role of GOT1 in cancer metabolism.
Front Oncol. 2024 Dec 24;14:1519046. doi: 10.3389/fonc.2024.1519046. eCollection 2024.
6
Haematometabolism rewiring in atherosclerotic cardiovascular disease.
Nat Rev Cardiol. 2025 Jun;22(6):414-430. doi: 10.1038/s41569-024-01108-9. Epub 2025 Jan 2.
7
Hematopoietic stem cell metabolism within the bone marrow niche - insights and opportunities.
Bioessays. 2025 Feb;47(2):e2400154. doi: 10.1002/bies.202400154. Epub 2024 Nov 6.
9
Metabolism and HSC fate: what NADPH is made for.
Trends Cell Biol. 2024 Jul 24. doi: 10.1016/j.tcb.2024.07.003.
10
Metabolic adaptation pilots the differentiation of human hematopoietic cells.
Life Sci Alliance. 2024 May 27;7(8). doi: 10.26508/lsa.202402747. Print 2024 Aug.

本文引用的文献

1
Adaptive stimulation of macropinocytosis overcomes aspartate limitation in cancer cells under hypoxia.
Nat Metab. 2022 Jun;4(6):724-738. doi: 10.1038/s42255-022-00583-z. Epub 2022 Jun 20.
2
Coordination of asparagine uptake and asparagine synthetase expression modulates CD8+ T cell activation.
JCI Insight. 2021 May 10;6(9):137761. doi: 10.1172/jci.insight.137761.
3
Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth.
Cell Metab. 2021 May 4;33(5):1013-1026.e6. doi: 10.1016/j.cmet.2021.02.001. Epub 2021 Feb 19.
5
Asparagine enhances LCK signalling to potentiate CD8 T-cell activation and anti-tumour responses.
Nat Cell Biol. 2021 Jan;23(1):75-86. doi: 10.1038/s41556-020-00615-4. Epub 2021 Jan 8.
6
Mitochondrial Potentiation Ameliorates Age-Related Heterogeneity in Hematopoietic Stem Cell Function.
Cell Stem Cell. 2021 Feb 4;28(2):241-256.e6. doi: 10.1016/j.stem.2020.09.018. Epub 2020 Oct 20.
7
Induction of a Timed Metabolic Collapse to Overcome Cancer Chemoresistance.
Cell Metab. 2020 Sep 1;32(3):391-403.e6. doi: 10.1016/j.cmet.2020.07.009. Epub 2020 Aug 6.
8
Hematopoietic Stem Cell Metabolism during Development and Aging.
Dev Cell. 2020 Jul 20;54(2):239-255. doi: 10.1016/j.devcel.2020.06.029.
10
Mitochondria regulate intestinal stem cell proliferation and epithelial homeostasis through FOXO.
Mol Biol Cell. 2020 Jul 1;31(14):1538-1549. doi: 10.1091/mbc.E19-10-0560. Epub 2020 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验