Suppr超能文献

通过叶片成像和深度卷积神经网络实现葡萄品种的自动识别:一项使用伊朗主要品种的概念验证研究

Automated Grapevine Cultivar Identification via Leaf Imaging and Deep Convolutional Neural Networks: A Proof-of-Concept Study Employing Primary Iranian Varieties.

作者信息

Nasiri Amin, Taheri-Garavand Amin, Fanourakis Dimitrios, Zhang Yu-Dong, Nikoloudakis Nikolaos

机构信息

Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, USA.

Mechanical Engineering of Biosystems Department, Lorestan University, Khorramabad P.O. Box 465, Iran.

出版信息

Plants (Basel). 2021 Aug 8;10(8):1628. doi: 10.3390/plants10081628.

Abstract

Extending over millennia, grapevine cultivation encompasses several thousand cultivars. Cultivar (cultivated variety) identification is traditionally dealt by ampelography, requiring repeated observations by experts along the growth cycle of fruiting plants. For on-time evaluations, molecular genetics have been successfully performed, though in many instances, they are limited by the lack of referable data or the cost element. This paper presents a convolutional neural network (CNN) framework for automatic identification of grapevine cultivar by using leaf images in the visible spectrum (400-700 nm). The VGG16 architecture was modified by a global average pooling layer, dense layers, a batch normalization layer, and a dropout layer. Distinguishing the intricate visual features of diverse grapevine varieties, and recognizing them according to these features was conceivable by the obtained model. A five-fold cross-validation was performed to evaluate the uncertainty and predictive efficiency of the CNN model. The modified deep learning model was able to recognize different grapevine varieties with an average classification accuracy of over 99%. The obtained model offers a rapid, low-cost and high-throughput grapevine cultivar identification. The ambition of the obtained tool is not to substitute but complement ampelography and quantitative genetics, and in this way, assist cultivar identification services.

摘要

葡萄种植延续了数千年,涵盖了数千个品种。传统上,品种(栽培变种)鉴定通过葡萄品种学进行,需要专家在结果植物的生长周期内进行反复观察。为了进行及时评估,分子遗传学已成功应用,不过在许多情况下,它们受到缺乏可参考数据或成本因素的限制。本文提出了一种卷积神经网络(CNN)框架,用于通过使用可见光谱(400 - 700纳米)中的叶片图像自动识别葡萄品种。VGG16架构通过全局平均池化层、全连接层、批归一化层和随机失活层进行了修改。所获得的模型能够区分不同葡萄品种复杂的视觉特征,并根据这些特征进行识别。进行了五折交叉验证以评估CNN模型的不确定性和预测效率。修改后的深度学习模型能够识别不同的葡萄品种,平均分类准确率超过99%。所获得的模型提供了一种快速、低成本且高通量的葡萄品种鉴定方法。所获得工具的目标不是替代葡萄品种学和数量遗传学,而是对其进行补充,从而协助品种鉴定服务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c40e/8399703/73a1d910bd76/plants-10-01628-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验