Suppr超能文献

利用深度学习自动检测白葡萄品种中的葡萄黄化病症状

Automatic Detection of Flavescence Dorée Symptoms Across White Grapevine Varieties Using Deep Learning.

作者信息

Boulent Justine, St-Charles Pierre-Luc, Foucher Samuel, Théau Jérome

机构信息

Department of Applied Geomatics, Université de Sherbrooke, Sherbrooke, QC, Canada.

Computer Research Institute of Montréal, Montréal, QC, Canada.

出版信息

Front Artif Intell. 2020 Nov 30;3:564878. doi: 10.3389/frai.2020.564878. eCollection 2020.

Abstract

(FD) is a grapevine disease caused by phytoplasmas and transmitted by leafhoppers that has been spreading in European vineyards despite significant efforts to control it. In this study, we aim to develop a model for the automatic detection of FD-like symptoms (which encompass other grapevine yellows symptoms). The concept is to detect likely FD-affected grapevines so that samples can be removed for FD laboratory identification, followed by uprooting if they test positive, all to be conducted quickly and without omission, thus avoiding further contamination in the fields. Developing FD-like symptoms detection models is not simple, as it requires dealing with the complexity of field conditions and FD symptoms' expression. To address these challenges, we use deep learning, which has already been proven effective in similar contexts. More specifically, we train a Convolutional Neural Network on image patches, and convert it into a Fully Convolutional Network to perform inference. As a result, we obtain a coarse segmentation of the likely FD-affected areas while having only trained a classifier, which is less demanding in terms of annotations. We evaluate the performance of our model trained on a white grape variety, Chardonnay, across five other grape varieties with varying FD symptoms expressions. Of the two largest test datasets, the true positive rate for Chardonnay reaches 98.48% whereas for Ugni-Blanc it drops to 8.3%, underlining the need for a multi-varietal training dataset to capture the diversity of FD symptoms. To obtain more transparent results and to better understand the model's sensitivity, we investigate its behavior using two visualization techniques, Guided Gradient-weighted Class Activation Mapping and the Uniform Manifold Approximation and Projection. Such techniques lead to a more comprehensive analysis with greater reliability, which is essential for in-field applications, and more broadly, for all applications impacting humans and the environment.

摘要

葡萄扇叶病(FD)是一种由植原体引起、由叶蝉传播的葡萄藤疾病,尽管人们付出了巨大努力来控制它,但它仍在欧洲葡萄园蔓延。在本研究中,我们旨在开发一种自动检测类似葡萄扇叶病症状(其中包括其他葡萄黄化症状)的模型。其理念是检测可能受葡萄扇叶病影响的葡萄藤,以便采集样本进行葡萄扇叶病实验室鉴定,如果检测呈阳性则将其连根拔除,所有这些操作都要迅速且无遗漏,从而避免田间的进一步污染。开发类似葡萄扇叶病症状检测模型并非易事,因为这需要应对田间条件的复杂性以及葡萄扇叶病症状的表现。为应对这些挑战,我们使用深度学习,深度学习在类似情境中已被证明是有效的。更具体地说,我们在图像块上训练卷积神经网络,并将其转换为全卷积网络以进行推理。结果,我们在仅训练了一个分类器的情况下,获得了可能受葡萄扇叶病影响区域的粗略分割,这在注释方面要求较低。我们在一个白葡萄品种霞多丽上训练的模型,在其他五个具有不同葡萄扇叶病症状表现的葡萄品种上进行了性能评估。在两个最大的测试数据集中,霞多丽的真阳性率达到98.48%,而白玉霓的真阳性率降至8.3%,这凸显了需要一个多品种训练数据集来捕捉葡萄扇叶病症状的多样性。为了获得更透明的结果并更好地理解模型的敏感性,我们使用两种可视化技术——引导式梯度加权类激活映射和均匀流形逼近与投影来研究其行为。这些技术能带来更全面、可靠性更高的分析,这对于田间应用至关重要,更广泛地说,对于所有影响人类和环境的应用都至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f604/7944144/480d2a5c7b60/frai-03-564878-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验