文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

跨多个站点和扫描仪协调扩散磁共振成像数据

Harmonizing Diffusion MRI Data Across Multiple Sites and Scanners.

作者信息

Mirzaalian Hengameh, de Pierrefeu Amicie, Savadjiev Peter, Pasternak Ofer, Bouix Sylvain, Kubicki Marek, Westin Carl-Fredrik, Shenton Martha E, Rathi Yogesh

机构信息

Harvard Medical School and Brigham and Women's Hospital, Boston, USA.

出版信息

Med Image Comput Comput Assist Interv. 2015 Oct;9349:12-19. doi: 10.1007/978-3-319-24553-9_2. Epub 2015 Nov 18.


DOI:10.1007/978-3-319-24553-9_2
PMID:27754499
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5045042/
Abstract

Harmonizing diffusion MRI (dMRI) images across multiple sites is imperative for joint analysis of the data to significantly increase the sample size and statistical power of neuroimaging studies. In this work, we develop a method to harmonize diffusion MRI data across multiple sites and scanners that incorporates two main novelties: i) we take into account the spatial variability of the signal (for different sites) in different parts of the brain as opposed to existing methods, which consider one linear statistical covariate for the entire brain; ii) our method is model-free, in that no model of diffusion (e.g., tensor, compartmental models, etc.) is assumed and the signal itself is corrected for scanner related differences. We use spherical harmonic basis functions to represent the signal and compute several rotation invariant features, which are used to estimate a regionally specific linear mapping between signal from different sites (and scanners). We validate our method on diffusion data acquired from four different sites (including two GE and two Siemens scanners) on a group of healthy subjects. Diffusion measures such fractional anisotropy, mean diffusivity and generalized fractional anisotropy are compared across multiple sites before and after the mapping. Our experimental results demonstrate that, for identical acquisition protocol across sites, scanner-specific differences can be accurately removed using the proposed method.

摘要

对多个站点的扩散磁共振成像(dMRI)图像进行协调,对于数据的联合分析至关重要,这能显著增加神经成像研究的样本量和统计功效。在这项工作中,我们开发了一种跨多个站点和扫描仪协调扩散MRI数据的方法,该方法包含两个主要创新点:i)与现有方法不同,现有方法为整个大脑考虑一个线性统计协变量,而我们考虑了大脑不同部位(针对不同站点)信号的空间变异性;ii)我们的方法是无模型的,即不假设任何扩散模型(例如张量、 compartmental模型等),并且针对与扫描仪相关的差异对信号本身进行校正。我们使用球谐基函数来表示信号并计算几个旋转不变特征,这些特征用于估计来自不同站点(和扫描仪)的信号之间区域特定的线性映射。我们在一组健康受试者的四个不同站点(包括两台GE和两台西门子扫描仪)获取的扩散数据上验证了我们的方法。在映射前后,对多个站点的扩散测量值(如分数各向异性、平均扩散率和广义分数各向异性)进行了比较。我们的实验结果表明,对于跨站点相同的采集协议,可以使用所提出的方法准确消除扫描仪特定的差异。

相似文献

[1]
Harmonizing Diffusion MRI Data Across Multiple Sites and Scanners.

Med Image Comput Comput Assist Interv. 2015-10

[2]
Inter-site and inter-scanner diffusion MRI data harmonization.

Neuroimage. 2016-7-15

[3]
Multi-site harmonization of diffusion MRI data in a registration framework.

Brain Imaging Behav. 2018-2

[4]
Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results.

Neuroimage. 2020-11-1

[5]
Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects.

Neuroimage. 2014-7-12

[6]
Cross-site harmonization of multi-shell diffusion MRI measures based on rotational invariant spherical harmonics (RISH).

Neuroimage. 2022-10-1

[7]
Reduced cross-scanner variability using vendor-agnostic sequences for single-shell diffusion MRI.

Magn Reson Med. 2024-7

[8]
Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters.

Neuroimage. 2018-9-8

[9]
Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding.

Neuroimage. 2017-2-15

[10]
MidRISH: Unbiased harmonization of rotationally invariant harmonics of the diffusion signal.

Magn Reson Imaging. 2024-9

引用本文的文献

[1]
What has brain diffusion magnetic resonance imaging taught us about chronic primary pain: a narrative review.

Pain. 2025-2-1

[2]
DDEvENet: Evidence-based ensemble learning for uncertainty-aware brain parcellation using diffusion MRI.

Comput Med Imaging Graph. 2025-3

[3]
Low-Rank Tensor Fusion for Enhanced Deep Learning-Based Multimodal Brain Age Estimation.

Brain Sci. 2024-12-13

[4]
A diffusion MRI tractography atlas for concurrent white matter mapping across Eastern and Western populations.

Sci Data. 2024-7-17

[5]
Empirical assessment of the assumptions of ComBat with diffusion tensor imaging.

J Med Imaging (Bellingham). 2024-3

[6]
Diffusion MRI harmonization via personalized template mapping.

Hum Brain Mapp. 2024-4

[7]
Harmonized diffusion MRI data and white matter measures from the Adolescent Brain Cognitive Development Study.

Sci Data. 2024-2-27

[8]
Exploring individual fixel-based white matter abnormalities in epilepsy.

Brain Commun. 2023-12-22

[9]
Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization.

Neuroimage. 2023-7-1

[10]
Clinical Significance of Diffusion Tensor Imaging in Metachromatic Leukodystrophy.

Neuropediatrics. 2023-8

本文引用的文献

[1]
Reliability of functional magnetic resonance imaging activation during working memory in a multi-site study: analysis from the North American Prodrome Longitudinal Study.

Neuroimage. 2014-4-13

[2]
Reliability of neuroanatomical measurements in a multisite longitudinal study of youth at risk for psychosis.

Hum Brain Mapp. 2014-5

[3]
A validation study of multicenter diffusion tensor imaging: reliability of fractional anisotropy and diffusivity values.

AJNR Am J Neuroradiol. 2011-12-15

[4]
Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study.

Neuroimage. 2011-2-18

[5]
Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners.

Neuroimage. 2010-3-23

[6]
Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies.

Neuroimage. 2009-4-15

[7]
Regularized, fast, and robust analytical Q-ball imaging.

Magn Reson Med. 2007-9

[8]
Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data.

Neuroimage. 2006-7-15

[9]
Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex.

IEEE Trans Med Imaging. 2001-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索