Mirzaalian Hengameh, de Pierrefeu Amicie, Savadjiev Peter, Pasternak Ofer, Bouix Sylvain, Kubicki Marek, Westin Carl-Fredrik, Shenton Martha E, Rathi Yogesh
Harvard Medical School and Brigham and Women's Hospital, Boston, USA.
Med Image Comput Comput Assist Interv. 2015 Oct;9349:12-19. doi: 10.1007/978-3-319-24553-9_2. Epub 2015 Nov 18.
Harmonizing diffusion MRI (dMRI) images across multiple sites is imperative for joint analysis of the data to significantly increase the sample size and statistical power of neuroimaging studies. In this work, we develop a method to harmonize diffusion MRI data across multiple sites and scanners that incorporates two main novelties: i) we take into account the spatial variability of the signal (for different sites) in different parts of the brain as opposed to existing methods, which consider one linear statistical covariate for the entire brain; ii) our method is model-free, in that no model of diffusion (e.g., tensor, compartmental models, etc.) is assumed and the signal itself is corrected for scanner related differences. We use spherical harmonic basis functions to represent the signal and compute several rotation invariant features, which are used to estimate a regionally specific linear mapping between signal from different sites (and scanners). We validate our method on diffusion data acquired from four different sites (including two GE and two Siemens scanners) on a group of healthy subjects. Diffusion measures such fractional anisotropy, mean diffusivity and generalized fractional anisotropy are compared across multiple sites before and after the mapping. Our experimental results demonstrate that, for identical acquisition protocol across sites, scanner-specific differences can be accurately removed using the proposed method.
对多个站点的扩散磁共振成像(dMRI)图像进行协调,对于数据的联合分析至关重要,这能显著增加神经成像研究的样本量和统计功效。在这项工作中,我们开发了一种跨多个站点和扫描仪协调扩散MRI数据的方法,该方法包含两个主要创新点:i)与现有方法不同,现有方法为整个大脑考虑一个线性统计协变量,而我们考虑了大脑不同部位(针对不同站点)信号的空间变异性;ii)我们的方法是无模型的,即不假设任何扩散模型(例如张量、 compartmental模型等),并且针对与扫描仪相关的差异对信号本身进行校正。我们使用球谐基函数来表示信号并计算几个旋转不变特征,这些特征用于估计来自不同站点(和扫描仪)的信号之间区域特定的线性映射。我们在一组健康受试者的四个不同站点(包括两台GE和两台西门子扫描仪)获取的扩散数据上验证了我们的方法。在映射前后,对多个站点的扩散测量值(如分数各向异性、平均扩散率和广义分数各向异性)进行了比较。我们的实验结果表明,对于跨站点相同的采集协议,可以使用所提出的方法准确消除扫描仪特定的差异。
Med Image Comput Comput Assist Interv. 2015-10
Neuroimage. 2016-7-15
Brain Imaging Behav. 2018-2
Magn Reson Imaging. 2024-9
Comput Med Imaging Graph. 2025-3
J Med Imaging (Bellingham). 2024-3
Hum Brain Mapp. 2024-4
Brain Commun. 2023-12-22
Neuropediatrics. 2023-8
AJNR Am J Neuroradiol. 2011-12-15
Magn Reson Med. 2007-9
Neuroimage. 2006-7-15