Suppr超能文献

跨多个站点和扫描仪协调扩散磁共振成像数据

Harmonizing Diffusion MRI Data Across Multiple Sites and Scanners.

作者信息

Mirzaalian Hengameh, de Pierrefeu Amicie, Savadjiev Peter, Pasternak Ofer, Bouix Sylvain, Kubicki Marek, Westin Carl-Fredrik, Shenton Martha E, Rathi Yogesh

机构信息

Harvard Medical School and Brigham and Women's Hospital, Boston, USA.

出版信息

Med Image Comput Comput Assist Interv. 2015 Oct;9349:12-19. doi: 10.1007/978-3-319-24553-9_2. Epub 2015 Nov 18.

Abstract

Harmonizing diffusion MRI (dMRI) images across multiple sites is imperative for joint analysis of the data to significantly increase the sample size and statistical power of neuroimaging studies. In this work, we develop a method to harmonize diffusion MRI data across multiple sites and scanners that incorporates two main novelties: i) we take into account the spatial variability of the signal (for different sites) in different parts of the brain as opposed to existing methods, which consider one linear statistical covariate for the entire brain; ii) our method is model-free, in that no model of diffusion (e.g., tensor, compartmental models, etc.) is assumed and the signal itself is corrected for scanner related differences. We use spherical harmonic basis functions to represent the signal and compute several rotation invariant features, which are used to estimate a regionally specific linear mapping between signal from different sites (and scanners). We validate our method on diffusion data acquired from four different sites (including two GE and two Siemens scanners) on a group of healthy subjects. Diffusion measures such fractional anisotropy, mean diffusivity and generalized fractional anisotropy are compared across multiple sites before and after the mapping. Our experimental results demonstrate that, for identical acquisition protocol across sites, scanner-specific differences can be accurately removed using the proposed method.

摘要

对多个站点的扩散磁共振成像(dMRI)图像进行协调,对于数据的联合分析至关重要,这能显著增加神经成像研究的样本量和统计功效。在这项工作中,我们开发了一种跨多个站点和扫描仪协调扩散MRI数据的方法,该方法包含两个主要创新点:i)与现有方法不同,现有方法为整个大脑考虑一个线性统计协变量,而我们考虑了大脑不同部位(针对不同站点)信号的空间变异性;ii)我们的方法是无模型的,即不假设任何扩散模型(例如张量、 compartmental模型等),并且针对与扫描仪相关的差异对信号本身进行校正。我们使用球谐基函数来表示信号并计算几个旋转不变特征,这些特征用于估计来自不同站点(和扫描仪)的信号之间区域特定的线性映射。我们在一组健康受试者的四个不同站点(包括两台GE和两台西门子扫描仪)获取的扩散数据上验证了我们的方法。在映射前后,对多个站点的扩散测量值(如分数各向异性、平均扩散率和广义分数各向异性)进行了比较。我们的实验结果表明,对于跨站点相同的采集协议,可以使用所提出的方法准确消除扫描仪特定的差异。

相似文献

1
Harmonizing Diffusion MRI Data Across Multiple Sites and Scanners.
Med Image Comput Comput Assist Interv. 2015 Oct;9349:12-19. doi: 10.1007/978-3-319-24553-9_2. Epub 2015 Nov 18.
2
Inter-site and inter-scanner diffusion MRI data harmonization.
Neuroimage. 2016 Jul 15;135:311-23. doi: 10.1016/j.neuroimage.2016.04.041. Epub 2016 Apr 30.
3
Multi-site harmonization of diffusion MRI data in a registration framework.
Brain Imaging Behav. 2018 Feb;12(1):284-295. doi: 10.1007/s11682-016-9670-y.
4
Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results.
Neuroimage. 2020 Nov 1;221:117128. doi: 10.1016/j.neuroimage.2020.117128. Epub 2020 Jul 13.
5
Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects.
Neuroimage. 2014 Nov 1;101:390-403. doi: 10.1016/j.neuroimage.2014.06.075. Epub 2014 Jul 12.
6
Cross-site harmonization of multi-shell diffusion MRI measures based on rotational invariant spherical harmonics (RISH).
Neuroimage. 2022 Oct 1;259:119439. doi: 10.1016/j.neuroimage.2022.119439. Epub 2022 Jul 3.
7
Reduced cross-scanner variability using vendor-agnostic sequences for single-shell diffusion MRI.
Magn Reson Med. 2024 Jul;92(1):246-256. doi: 10.1002/mrm.30062. Epub 2024 Mar 12.
8
Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters.
Neuroimage. 2019 Jan 1;184:180-200. doi: 10.1016/j.neuroimage.2018.08.073. Epub 2018 Sep 8.
9
Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding.
Neuroimage. 2017 Feb 15;147:517-531. doi: 10.1016/j.neuroimage.2016.11.053. Epub 2016 Nov 27.
10
MidRISH: Unbiased harmonization of rotationally invariant harmonics of the diffusion signal.
Magn Reson Imaging. 2024 Sep;111:113-119. doi: 10.1016/j.mri.2024.03.033. Epub 2024 Mar 26.

引用本文的文献

1
What has brain diffusion magnetic resonance imaging taught us about chronic primary pain: a narrative review.
Pain. 2025 Feb 1;166(2):243-261. doi: 10.1097/j.pain.0000000000003345. Epub 2024 Aug 21.
2
DDEvENet: Evidence-based ensemble learning for uncertainty-aware brain parcellation using diffusion MRI.
Comput Med Imaging Graph. 2025 Mar;120:102489. doi: 10.1016/j.compmedimag.2024.102489. Epub 2025 Jan 4.
3
Low-Rank Tensor Fusion for Enhanced Deep Learning-Based Multimodal Brain Age Estimation.
Brain Sci. 2024 Dec 13;14(12):1252. doi: 10.3390/brainsci14121252.
5
Empirical assessment of the assumptions of ComBat with diffusion tensor imaging.
J Med Imaging (Bellingham). 2024 Mar;11(2):024011. doi: 10.1117/1.JMI.11.2.024011. Epub 2024 Apr 17.
6
Diffusion MRI harmonization via personalized template mapping.
Hum Brain Mapp. 2024 Apr;45(5):e26661. doi: 10.1002/hbm.26661.
8
Exploring individual fixel-based white matter abnormalities in epilepsy.
Brain Commun. 2023 Dec 22;6(1):fcad352. doi: 10.1093/braincomms/fcad352. eCollection 2024.
10
Clinical Significance of Diffusion Tensor Imaging in Metachromatic Leukodystrophy.
Neuropediatrics. 2023 Aug;54(4):244-252. doi: 10.1055/a-2073-4178. Epub 2023 Apr 13.

本文引用的文献

2
Reliability of neuroanatomical measurements in a multisite longitudinal study of youth at risk for psychosis.
Hum Brain Mapp. 2014 May;35(5):2424-34. doi: 10.1002/hbm.22338. Epub 2013 Aug 24.
3
A validation study of multicenter diffusion tensor imaging: reliability of fractional anisotropy and diffusivity values.
AJNR Am J Neuroradiol. 2012 Apr;33(4):695-700. doi: 10.3174/ajnr.A2844. Epub 2011 Dec 15.
4
Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study.
Neuroimage. 2011 Jun 1;56(3):1398-411. doi: 10.1016/j.neuroimage.2011.02.010. Epub 2011 Feb 18.
5
Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners.
Neuroimage. 2010 Jul 15;51(4):1384-94. doi: 10.1016/j.neuroimage.2010.03.046. Epub 2010 Mar 23.
6
Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies.
Neuroimage. 2009 Apr 15;45(3):810-23. doi: 10.1016/j.neuroimage.2008.12.039. Epub 2008 Dec 31.
7
Regularized, fast, and robust analytical Q-ball imaging.
Magn Reson Med. 2007 Sep;58(3):497-510. doi: 10.1002/mrm.21277.
8
Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data.
Neuroimage. 2006 Jul 15;31(4):1487-505. doi: 10.1016/j.neuroimage.2006.02.024. Epub 2006 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验