Messina Marco S, Maynard Heather D
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA.
California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA.
Mater Chem Front. 2020 Apr 1;4(4):1040-1051. doi: 10.1039/c9qm00494g. Epub 2020 Jan 15.
Olefin metathesis has revolutionized synthetic approaches to carbon-carbon bond formation. With a rich history beginning in industrial settings through its advancement in academic laboratories leading to new and highly active metathesis catalysts, olefin metathesis has found use in the generation of complex natural products, the cyclization of bioactive materials, and in the polymerization of new and unique polymer architectures. Throughout this review, we will trace the deployment of olefin metathesis-based strategies for the modification of proteins, a process which has been facilitated by the extensive development of stable, isolable, and highly active transition-metal-based metathesis catalysts. We first begin by summarizing early works which detail peptide modification strategies that played a vital role in identifying stable metathesis catalysts. We then delve into protein modification using cross metathesis and finish with recent work on the generation of protein-polymer conjugates through ring-opening metathesis polymerization.
烯烃复分解反应彻底改变了碳-碳键形成的合成方法。烯烃复分解反应有着丰富的历史,它始于工业领域,后在学术实验室中得到发展,催生了新型且高活性的复分解催化剂。烯烃复分解反应已被用于复杂天然产物的合成、生物活性材料的环化以及新型独特聚合物结构的聚合反应。在这篇综述中,我们将追溯基于烯烃复分解反应的蛋白质修饰策略的应用情况,这一过程因稳定、可分离且高活性的过渡金属基复分解催化剂的广泛发展而变得更加容易。我们首先总结早期的研究工作,这些工作详细阐述了在鉴定稳定复分解催化剂过程中发挥关键作用的肽修饰策略。然后我们深入探讨交叉复分解反应在蛋白质修饰中的应用,最后介绍通过开环复分解聚合反应生成蛋白质-聚合物共轭物的最新研究进展。