Pépin Jean-Louis, Bailly Sébastien, Tamisier Renaud
HP2 Laboratory, INSERM U1042, University Grenoble Alpes, Grenoble, France.
EFCR Laboratory, CHU de Grenoble Alpes, Grenoble, France.
Respirology. 2020 May;25(5):486-494. doi: 10.1111/resp.13669. Epub 2019 Aug 14.
Sleep apnoea is now regarded as a highly prevalent systemic, multimorbid, chronic disease requiring a combination of long-term home-based treatments. Optimization of personalized treatment strategies requires accurate patient phenotyping. Data to describe the broad variety of phenotypes can come from electronic health records, health insurance claims, socio-economic administrative databases, environmental monitoring, social media, etc. Connected devices in and outside homes collect vast amount of data amassed in databases. All this contributes to 'Big Data' that, if used appropriately, has great potential for the benefit of health, well-being and therapeutics. Sleep apnoea is particularly well placed with regards to Big Data because the primary treatment is positive airway pressure (PAP). PAP devices, used every night over long periods by millions of patients across the world, generate an enormous amount of data. In this review, we discuss how different types of Big Data have, and could be, used to improve our understanding of sleep-disordered breathing, to identify undiagnosed sleep apnoea, to personalize treatment and to adapt health policies and better allocate resources. We discuss some of the challenges of Big Data including the need for appropriate data management, compilation and analysis techniques employing innovative statistical approaches alongside machine learning/artificial intelligence; closer collaboration between data scientists and physicians; and respect of the ethical and regulatory constraints of collecting and using Big Data. Lastly, we consider how Big Data can be used to overcome the limitations of randomized clinical trials and advance real-life evidence-based medicine for sleep apnoea.
睡眠呼吸暂停现在被视为一种高度普遍的全身性、多病共存的慢性疾病,需要长期居家治疗相结合。优化个性化治疗策略需要准确的患者表型分析。描述各种表型的数据可以来自电子健康记录、健康保险理赔、社会经济管理数据库、环境监测、社交媒体等。家庭内外的联网设备收集大量数据并存储在数据库中。所有这些都促成了“大数据”,如果使用得当,大数据在促进健康、福祉和治疗方面具有巨大潜力。睡眠呼吸暂停在大数据方面具有特别优势,因为主要治疗方法是气道正压通气(PAP)。全球数百万患者每晚长期使用的PAP设备会产生大量数据。在这篇综述中,我们讨论了不同类型的大数据如何以及可以如何用于增进我们对睡眠呼吸障碍的理解、识别未确诊的睡眠呼吸暂停、实现治疗个性化以及调整健康政策和更好地分配资源。我们讨论了大数据面临的一些挑战,包括需要采用创新统计方法以及机器学习/人工智能的适当数据管理、汇编和分析技术;数据科学家和医生之间更密切的合作;以及尊重收集和使用大数据的伦理和监管限制。最后,我们考虑大数据如何用于克服随机临床试验的局限性,并推进睡眠呼吸暂停的现实生活循证医学。