Zhang Yu, Nishiyama Takahiko, Li Hui, Huang Jian, Atmanli Ayhan, Sanchez-Ortiz Efrain, Wang Zhaoning, Mireault Alex A, Mammen Pradeep P A, Bassel-Duby Rhonda, Olson Eric N
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Mol Ther Methods Clin Dev. 2021 Jun 4;22:122-132. doi: 10.1016/j.omtm.2021.05.014. eCollection 2021 Sep 10.
Duchenne muscular dystrophy (DMD), caused by mutations in the X-linked dystrophin gene, is a lethal neuromuscular disease. Correction of DMD mutations in animal models has been achieved by CRISPR/Cas9 genome editing using Cas9 (Cas9) delivered by adeno-associated virus (AAV). However, due to the limited viral packaging capacity of AAV, two AAV vectors are required to deliver the Cas9 nuclease and its single guide RNA (sgRNA), impeding its therapeutic application. We devised an efficient single-cut gene-editing method using a compact Cas9 (Cas9) to restore the open reading frame of exon 51, the most commonly affected out-of-frame exon in DMD. Editing of exon 51 in cardiomyocytes derived from human induced pluripotent stem cells revealed a strong preference for exon reframing via a two-nucleotide deletion. We adapted this system to express Cas9 and sgRNA from a single AAV9 vector. Systemic delivery of this All-In-One AAV9 system restored dystrophin expression and improved muscle contractility in a mouse model of DMD with exon 50 deletion. These findings demonstrate the effectiveness of CRISPR/Cas9 delivered by a consolidated AAV delivery system in the correction of DMD , representing a promising therapeutic approach to correct the genetic causes of DMD.
杜兴氏肌营养不良症(DMD)是一种致命的神经肌肉疾病,由X连锁的肌营养不良蛋白基因突变引起。在动物模型中,通过使用腺相关病毒(AAV)递送的Cas9(Cas9)进行CRISPR/Cas9基因组编辑,已实现对DMD突变的校正。然而,由于AAV的病毒包装能力有限,需要两个AAV载体来递送Cas9核酸酶及其单向导RNA(sgRNA),这阻碍了其治疗应用。我们设计了一种高效的单切口基因编辑方法,使用紧凑型Cas9(Cas9)来恢复外显子51的开放阅读框,外显子51是DMD中最常受影响的移码外显子。对源自人诱导多能干细胞的心肌细胞中的外显子51进行编辑,结果显示强烈倾向于通过两核苷酸缺失进行外显子重排。我们对该系统进行了改造,使其能从单个AAV9载体表达Cas9和sgRNA。在一个外显子50缺失的DMD小鼠模型中,全身递送这种一体化AAV9系统可恢复肌营养不良蛋白的表达并改善肌肉收缩力。这些发现证明了由整合的AAV递送系统递送的CRISPR/Cas9在校正DMD方面的有效性,代表了一种校正DMD遗传病因的有前景的治疗方法。