Romo-Herrera J M, Juarez-Moreno K, Guerrini L, Kang Y, Feliu N, Parak W J, Alvarez-Puebla R A
Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (CNyN-UNAM), Km 107 Carretera Tijuana-Ensenada, CP 22800 Ensenada, B.C., México.
CONACYT, Catedras at Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (CNyN-UNAM), Km 107 Carretera Tijuana-Ensenada, CP 22800 Ensenada, B.C., México.
Mater Today Bio. 2021 Aug 4;11:100125. doi: 10.1016/j.mtbio.2021.100125. eCollection 2021 Jun.
The engineering of advanced materials capable of mimicking the cellular micro-environment while providing cells with physicochemical cues is central for cell culture applications. In this regard, paper meets key requirements in terms of biocompatibility, hydrophilicity, porosity, mechanical strength, ease of physicochemical modifications, cost, and ease of large-scale production, to be used as a scaffold material for biomedical applications. Most notably, paper has demonstrated the potential to become an attractive alternative to conventional biomaterials for creating two-dimensional (2D) and three-dimensional (3D) biomimetic cell culture models that mimic the features of tissue environments for improving our understanding of cell behavior (e.g. growth, cell migration, proliferation, differentiation and tumor metastasis) in their natural state. On the other hand, integration of plasmonic nanomaterials (e.g. gold nanoparticles) within the fibrous structure of paper opens the possibility to generate multifunctional scaffolds equipped with biosensing tools for monitoring different cell cues through physicochemical signals. Among different plasmonic based detection techniques, surface-enhanced Raman scattering (SERS) spectroscopy emerged as a highly specific and sensitive optical tool for its extraordinary sensitivity and the ability for multidimensional and accurate molecular identification. Thus, paper-based plasmonic substrates in combination with SERS optical detection represent a powerful future platform for monitoring cell cues during cell culture processes. To this end, in this review, we will describe the different methods for fabricating hybrid paper-plasmonic nanoparticle substrates and their use in combination with SERS spectroscopy for biosensing and, more specifically, in cell culture applications.
能够模拟细胞微环境并为细胞提供物理化学线索的先进材料工程对于细胞培养应用至关重要。在这方面,纸张在生物相容性、亲水性、孔隙率、机械强度、物理化学修饰的简便性、成本和大规模生产的简易性方面满足关键要求,可作为生物医学应用的支架材料。最值得注意的是,纸张已显示出成为传统生物材料有吸引力的替代品的潜力,用于创建二维(2D)和三维(3D)仿生细胞培养模型,这些模型模仿组织环境的特征,以增进我们对细胞在其自然状态下行为(例如生长、细胞迁移、增殖、分化和肿瘤转移)的理解。另一方面,将等离子体纳米材料(例如金纳米颗粒)整合到纸张的纤维结构中,为生成配备生物传感工具的多功能支架开辟了可能性,该工具可通过物理化学信号监测不同的细胞线索。在基于等离子体的不同检测技术中,表面增强拉曼散射(SERS)光谱因其非凡的灵敏度以及多维和准确分子识别的能力,成为一种高度特异性和灵敏的光学工具。因此,基于纸张的等离子体基底与SERS光学检测相结合,代表了细胞培养过程中监测细胞线索的强大未来平台。为此,在本综述中,我们将描述制备混合纸张 - 等离子体纳米颗粒基底的不同方法,以及它们与SERS光谱结合用于生物传感,更具体地说,用于细胞培养应用的情况。