Queirós Ana M, Talbot Elizabeth, Beaumont Nicola J, Somerfield Paul J, Kay Susan, Pascoe Christine, Dedman Simon, Fernandes Jose A, Jueterbock Alexander, Miller Peter I, Sailley Sevrine F, Sará Gianluca, Carr Liam M, Austen Melanie C, Widdicombe Steve, Rilov Gil, Levin Lisa A, Hull Stephen C, Walmsley Suzannah F, Nic Aonghusa Caitriona
Plymouth Marine Laboratory, Plymouth, UK.
Hopkins Marine Station, Stanford University, Stanford, California, USA.
Glob Chang Biol. 2021 Nov;27(21):5514-5531. doi: 10.1111/gcb.15827. Epub 2021 Sep 6.
Marine spatial planning that addresses ocean climate-driven change ('climate-smart MSP') is a global aspiration to support economic growth, food security and ecosystem sustainability. Ocean climate change ('CC') modelling may become a key decision-support tool for MSP, but traditional modelling analysis and communication challenges prevent their broad uptake. We employed MSP-specific ocean climate modelling analyses to inform a real-life MSP process; addressing how nature conservation and fisheries could be adapted to CC. We found that the currently planned distribution of these activities may become unsustainable during the policy's implementation due to CC, leading to a shortfall in its sustainability and blue growth targets. Significant, climate-driven ecosystem-level shifts in ocean components underpinning designated sites and fishing activity were estimated, reflecting different magnitudes of shifts in benthic versus pelagic, and inshore versus offshore habitats. Supporting adaptation, we then identified: CC refugia (areas where the ecosystem remains within the boundaries of its present state); CC hotspots (where climate drives the ecosystem towards a new state, inconsistent with each sectors' present use distribution); and for the first time, identified bright spots (areas where oceanographic processes drive range expansion opportunities that may support sustainable growth in the medium term). We thus create the means to: identify where sector-relevant ecosystem change is attributable to CC; incorporate resilient delivery of conservation and sustainable ecosystem management aims into MSP; and to harness opportunities for blue growth where they exist. Capturing CC bright spots alongside refugia within protected areas may present important opportunities to meet sustainability targets while helping support the fishing sector in a changing climate. By capitalizing on the natural distribution of climate resilience within ocean ecosystems, such climate-adaptive spatial management strategies could be seen as nature-based solutions to limit the impact of CC on ocean ecosystems and dependent blue economy sectors, paving the way for climate-smart MSP.
应对海洋气候驱动变化的海洋空间规划(“气候智能型海洋空间规划”)是一项全球愿景,旨在支持经济增长、粮食安全和生态系统可持续性。海洋气候变化(“CC”)建模可能会成为海洋空间规划的关键决策支持工具,但传统建模分析和沟通挑战阻碍了其广泛应用。我们采用了特定于海洋空间规划的海洋气候建模分析,为实际的海洋空间规划过程提供信息;探讨自然保护和渔业如何适应气候变化。我们发现,由于气候变化,目前规划的这些活动分布在政策实施期间可能变得不可持续,导致其可持续性和蓝色增长目标出现缺口。据估计,支撑指定区域和渔业活动的海洋组成部分发生了由气候驱动的重大生态系统层面变化,这反映了底栖与浮游、近岸与近海栖息地不同程度的变化。为支持适应措施,我们随后确定了:气候避难所(生态系统仍保持在当前状态范围内的区域);气候热点(气候将生态系统推向新状态,与各部门当前使用分布不一致的区域);并且首次确定了亮点(海洋学过程推动范围扩展机会,可能在中期支持可持续增长的区域)。因此,我们创造了以下方法:确定与各部门相关的生态系统变化可归因于气候变化的位置;将保护和可持续生态系统管理目标的弹性实现纳入海洋空间规划;并利用存在蓝色增长机会的地方。在保护区内捕捉气候亮点以及避难所,可能会带来重要机遇,有助于在气候变化的情况下实现可持续性目标,同时支持渔业部门。通过利用海洋生态系统内气候适应力的自然分布,这种气候适应性空间管理策略可被视为基于自然的解决方案,以限制气候变化对海洋生态系统和相关蓝色经济部门的影响,为气候智能型海洋空间规划铺平道路。