Suppr超能文献

横断面和前瞻性研究老年人睡眠、久坐和活跃行为与心理健康的关系:来自 Seniors-ENRICA-2 研究的成分数据分析。

Cross-sectional and prospective associations of sleep, sedentary and active behaviors with mental health in older people: a compositional data analysis from the Seniors-ENRICA-2 study.

机构信息

IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain.

PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain.

出版信息

Int J Behav Nutr Phys Act. 2021 Sep 16;18(1):124. doi: 10.1186/s12966-021-01194-9.

Abstract

BACKGROUND

Most studies on the effects of sleep, sedentary behavior (SB), and physical activity (PA) on mental health did not account for the intrinsically compositional nature of the time spent in several behaviors. Thus, we examined the cross-sectional and prospective associations of device-measured compositional time in sleep, SB, light PA (LPA) and moderate-to-vigorous PA (MVPA) with depression symptoms, loneliness, happiness, and global mental health in older people (≥ 65 years).

METHODS

Data were taken from the Seniors-ENRICA-2 study, with assessments in 2015-2017 (wave 0) and 2018-2019 (wave 1). Time spent in sleep, SB, LPA and MVPA was assessed by wrist-worn accelerometers. Depression symptoms, loneliness, happiness, and global mental health were self-reported using validated questionnaires. Analyses were performed using a compositional data analysis (CoDA) paradigm and adjusted for potential confounders.

RESULTS

In cross-sectional analyses at wave 0 (n = 2489), time-use composition as a whole was associated with depression and happiness (all p < 0.01). The time spent in MVPA relative to other behaviors was beneficially associated with depression (γ = -0.397, p < 0.001), loneliness (γ = -0.124, p = 0.017) and happiness (γ = 0.243, p < 0.001). Hypothetically, replacing 30-min of Sleep, SB or LPA with MVPA was beneficially cross-sectionally related with depression (effect size [ES] ranged -0.326 to -0.246), loneliness (ES ranged -0.118 to -0.073), and happiness (ES ranged 0.152 to 0.172). In prospective analyses (n = 1679), MVPA relative to other behaviors at baseline, was associated with favorable changes in global mental health (γ = 0.892, p = 0.049). We observed a beneficial prospective effect on global mental health when 30-min of sleep (ES = 0.521), SB (ES = 0.479) or LPA (ES = 0.755) were theoretically replaced for MVPA.

CONCLUSIONS

MVPA was cross-sectionally related with reduced depression symptoms and loneliness and elevated level of happiness, and prospectively related with enhanced global mental health. Compositional isotemporal analyses showed that hypothetically replacing sleep, SB or LPA with MVPA could result in modest but significantly improvements on mental health indicators. Our findings add evidence to the emerging body of research on 24-h time-use and health using CoDA and suggest an integrated role of daily behaviors on mental health in older people.

摘要

背景

大多数关于睡眠、久坐行为(SB)和体力活动(PA)对心理健康影响的研究都没有考虑到几种行为所花费的时间的内在组成性质。因此,我们研究了老年人(≥65 岁)中设备测量的睡眠、SB、低强度 PA(LPA)和中高强度 PA(MVPA)组成时间与抑郁症状、孤独感、幸福感和整体心理健康之间的横断面和前瞻性关联。

方法

数据来自 Seniors-ENRICA-2 研究,评估时间为 2015-2017 年(第 0 波)和 2018-2019 年(第 1 波)。睡眠、SB、LPA 和 MVPA 所花费的时间由佩戴在手腕上的加速度计评估。抑郁症状、孤独感、幸福感和整体心理健康状况使用经过验证的问卷进行自我报告。分析使用组成数据分析(CoDA)范式进行,并调整了潜在混杂因素。

结果

在第 0 波的横断面分析中(n=2489),整体时间利用组成与抑郁和幸福感均相关(均 p<0.01)。与其他行为相比,MVPA 时间的分配与抑郁(γ=-0.397,p<0.001)、孤独感(γ=-0.124,p=0.017)和幸福感(γ=0.243,p<0.001)呈正相关。假设用 MVPA 替代 30 分钟的睡眠、SB 或 LPA,与抑郁(效应大小 [ES] 范围为-0.326 至-0.246)、孤独感(ES 范围为-0.118 至-0.073)和幸福感(ES 范围为 0.152 至 0.172)存在显著的横断面关联。在前瞻性分析中(n=1679),基线时 MVPA 与其他行为的关系与整体心理健康的有利变化相关(γ=0.892,p=0.049)。当 30 分钟的睡眠(ES=0.521)、SB(ES=0.479)或 LPA(ES=0.755)被理论上用 MVPA 替代时,我们观察到对整体心理健康有有益的前瞻性影响。

结论

MVPA 与抑郁症状减轻、孤独感减轻和幸福感升高相关,与整体心理健康改善相关。组成等时分析表明,假设用 MVPA 替代睡眠、SB 或 LPA,可以适度但显著改善心理健康指标。我们的研究结果为使用 CoDA 研究 24 小时时间利用与健康之间关系的新兴研究提供了证据,并表明日常行为对老年人心理健康的综合作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89a8/8444566/c620a857720a/12966_2021_1194_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验