Kim Seok, Handler Jordan J, Cho Young Tae, Barbastathis George, Fang Nicholas X
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Mechanical Engineering, Changwon National University, Changwon, South Korea.
Sci Adv. 2021 Sep 17;7(38):eabh1200. doi: 10.1126/sciadv.abh1200.
The limitation of projection microstereolithography in additive manufacturing methods is that they typically use a single-aperture imaging configuration, which restricts their ability to produce microstructures in large volumes owing to the trade-off between image resolution and image field area. Here, we propose an integral lithography based on integral image reconstruction coupled with a planar lens array. The individual microlenses maintain a high numerical aperture and are used to create digital light patterns that can expand the printable area by the number of microlenses (10 to 10), thereby allowing for the scalable stereolithographic fabrication of 3D features that surpass the resolution-to-area scaling limit. We extend the capability of integral lithography for programmable printing of deterministic nonperiodic structures through the rotational overlapping or stacking of multiple exposures with controlled angular offsets. This printing platform provides new possibilities for producing periodic and aperiodic microarchitectures spanning four orders of magnitude from micrometers to centimeters.
投影微立体光刻技术在增材制造方法中的局限性在于,它们通常采用单孔径成像配置,由于图像分辨率和图像场面积之间的权衡,这限制了它们大批量生产微结构的能力。在此,我们提出一种基于积分图像重建并结合平面透镜阵列的积分光刻技术。各个微透镜保持高数值孔径,并用于创建数字光图案,这些图案可通过微透镜的数量(10到10)扩展可打印区域,从而实现超越分辨率与面积缩放限制的三维特征的可扩展立体光刻制造。我们通过多次曝光以受控角度偏移进行旋转重叠或堆叠,扩展了积分光刻技术对确定性非周期性结构进行可编程打印的能力。该打印平台为生产从微米到厘米跨越四个数量级的周期性和非周期性微结构提供了新的可能性。