Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
Lab Chip. 2019 Sep 7;19(17):2799-2810. doi: 10.1039/c9lc00542k. Epub 2019 Jul 23.
In situ direct laser writing (isDLW) strategies that facilitate the printing of three-dimensional (3D) nanostructured components directly inside of, and fully sealed to, enclosed microchannels are uniquely suited for manufacturing geometrically complex microfluidic technologies. Recent efforts have demonstrated the benefits of using micromolding and bonding protocols for isDLW; however, the reliance on polydimethylsiloxane (PDMS) leads to limited fluidic sealing (e.g., operational pressures <50-75 kPa) and poor compatibility with standard organic solvent-based developers. To bypass these issues, here we explore the use of cyclic olefin polymer (COP) as an enabling microchannel material for isDLW by investigating three fundamental classes of microfluidic systems corresponding to increasing degrees of sophistication: (i) "2.5D" functionally static fluidic barriers (10-100 μm in height), which supported uncompromised structure-to-channel sealing under applied input pressures of up to 500 kPa; (ii) 3D static interwoven microvessel-inspired structures (inner diameters < 10 μm) that exhibited effective isolation of distinct fluorescently labelled microfluidic flow streams; and (iii) 3D dynamically actuated microfluidic transistors, which comprised bellowed sealing elements (wall thickness = 500 nm) that could be actively deformed via an applied gate pressure to fully obstruct source-to-drain fluid flow. In combination, these results suggest that COP-based isDLW offers a promising pathway to wide-ranging fluidic applications that demand significant architectural versatility at submicron scales with invariable sealing integrity, such as for biomimetic organ-on-a-chip systems and integrated microfluidic circuits.
原位直写(isDLW)策略可在封闭的微通道内部直接打印三维(3D)纳米结构组件,并完全密封,非常适合制造几何形状复杂的微流控技术。最近的努力已经证明了使用微成型和键合协议进行 isDLW 的好处;然而,对聚二甲基硅氧烷(PDMS)的依赖导致了有限的流体密封(例如,操作压力<50-75kPa)和与标准有机溶剂基显影剂的兼容性差。为了避免这些问题,我们探索了使用环烯烃聚合物(COP)作为 isDLW 的有效微通道材料,通过研究三种基本类型的微流控系统,对应于越来越复杂的程度:(i)“2.5D”功能静态流体屏障(高度为 10-100μm),在高达 500kPa 的施加输入压力下支持无损结构与通道密封;(ii)3D 静态交织微脉管启发结构(内径<10μm),有效地隔离了不同荧光标记的微流体流动流;和(iii)3D 动态致动微流控晶体管,其包括波纹管密封元件(壁厚=500nm),可通过施加的栅极压力主动变形,以完全阻止源到漏的流体流动。总的来说,这些结果表明,基于 COP 的 isDLW 提供了一种很有前途的途径,可以实现广泛的流体应用,这些应用在亚微米尺度上需要具有重大的架构灵活性,并且具有不变的密封完整性,例如仿生器官上的芯片系统和集成微流控电路。