Suppr超能文献

3D 打印高密度、可逆、芯片到芯片的微流控互连。

3D printed high density, reversible, chip-to-chip microfluidic interconnects.

机构信息

Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA.

出版信息

Lab Chip. 2018 Feb 13;18(4):639-647. doi: 10.1039/c7lc01113j.

Abstract

Our latest developments in miniaturizing 3D printed microfluidics [Gong et al., Lab Chip, 2016, 16, 2450; Gong et al., Lab Chip, 2017, 17, 2899] offer the opportunity to fabricate highly integrated chips that measure only a few mm on a side. For such small chips, an interconnection method is needed to provide the necessary world-to-chip reagent and pneumatic connections. In this paper, we introduce simple integrated microgaskets (SIMs) and controlled-compression integrated microgaskets (CCIMs) to connect a small device chip to a larger interface chip that implements world-to-chip connections. SIMs or CCIMs are directly 3D printed as part of the device chip, and therefore no additional materials or components are required to make the connection to the larger 3D printed interface chip. We demonstrate 121 chip-to-chip interconnections in an 11 × 11 array for both SIMs and CCIMs with an areal density of 53 interconnections per mm and show that they withstand fluid pressures of 50 psi. We further demonstrate their reusability by testing the devices 100 times without seal failure. Scaling experiments show that 20 × 20 interconnection arrays are feasible and that the CCIM areal density can be increased to 88 interconnections per mm. We then show the utility of spatially distributed discrete CCIMs by using an interconnection chip with 28 chip-to-world interconnects to test 45 3D printed valves in a 9 × 5 array. Each valve is only 300 μm in diameter (the smallest yet reported for 3D printed valves). Every row of 5 valves is tested to at least 10 000 actuations, with one row tested to 1 000 000 actuations. In all cases, there is no sign of valve failure, and the CCIM interconnections prove an effective means of using a single interface chip to test a series of valve array chips.

摘要

我们在将 3D 打印微流控技术微型化方面的最新进展[Gong 等人,Lab Chip,2016,16,2450;Gong 等人,Lab Chip,2017,17,2899]提供了制造仅几毫米边长的高度集成芯片的机会。对于如此小的芯片,需要有一种互连方法来提供必要的芯片世界试剂和气动连接。在本文中,我们引入了简单集成微垫圈(SIM)和控制压缩集成微垫圈(CCIM),以将小器件芯片连接到实现芯片世界连接的较大接口芯片。SIM 或 CCIM 直接作为器件芯片的一部分 3D 打印,因此无需额外的材料或组件即可与较大的 3D 打印接口芯片建立连接。我们展示了 121 个 SIM 和 CCIM 的芯片-芯片互连,在 11×11 阵列中,每个芯片的面积密度为 53 个互连,并且它们能够承受 50psi 的流体压力。我们通过在没有密封失效的情况下测试设备 100 次进一步证明了它们的可重复使用性。缩放实验表明,20×20 互连阵列是可行的,并且 CCIM 的面积密度可以增加到 88 个互连/毫米。然后,我们通过使用具有 28 个芯片到世界互连的互连芯片展示了空间分布离散 CCIM 的实用性,以测试 9×5 阵列中的 45 个 3D 打印阀。每个阀的直径仅为 300μm(报道的最小 3D 打印阀)。每行 5 个阀至少测试 10000 次动作,其中一行测试 1000000 次动作。在所有情况下,均未发现阀故障,并且 CCIM 互连证明了使用单个接口芯片测试一系列阀阵列芯片的有效方法。

相似文献

7
3D-printed Quake-style microvalves and micropumps.3D 打印的地震风格微阀和微泵。
Lab Chip. 2018 Apr 17;18(8):1207-1214. doi: 10.1039/C8LC00001H.

引用本文的文献

本文引用的文献

3
Mechanical Designs for Inorganic Stretchable Circuits in Soft Electronics.用于柔性电子学中无机可拉伸电路的机械设计
IEEE Trans Compon Packaging Manuf Technol. 2015 Sep;5(9):1201-1218. doi: 10.1109/TCPMT.2015.2417801. Epub 2015 May 7.
5
Optical Approach to Resin Formulation for 3D Printed Microfluidics.用于3D打印微流控的树脂配方的光学方法。
RSC Adv. 2015 Dec 31;5(129):106621-106632. doi: 10.1039/C5RA23855B. Epub 2015 Dec 7.
6
3D printed microfluidic devices with integrated valves.具有集成阀门的3D打印微流控装置。
Biomicrofluidics. 2015 Jan 13;9(1):016501. doi: 10.1063/1.4905840. eCollection 2015 Jan.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验