Suppr超能文献

用于医学图像分割的带有EfficientNet编码器的分形、循环和密集U-Net架构。

Fractal, recurrent, and dense U-Net architectures with EfficientNet encoder for medical image segmentation.

作者信息

Siddique Nahian, Paheding Sidike, Reyes Angulo Abel A, Alom Md Zahangir, Devabhaktuni Vijay K

机构信息

Purdue University Northwest, Department of Electrical and Computer Engineering, Hammond, Indiana, United States.

Michigan Technological University, Department of Applied Computing, Houghton, Michigan, United States.

出版信息

J Med Imaging (Bellingham). 2022 Nov;9(6):064004. doi: 10.1117/1.JMI.9.6.064004. Epub 2022 Dec 24.

Abstract

PURPOSE

U-Net is a deep learning technique that has made significant contributions to medical image segmentation. Although the accomplishments of deep learning algorithms in terms of image processing are evident, many challenges still need to be overcome to achieve human-like performance. One of the main challenges in building deeper U-Nets is black-box problems, such as vanishing gradients. Overcoming this problem allows us to develop neural networks with advanced network designs.

APPROACH

We propose three U-Net variants, namely efficient R2U-Net, efficient dense U-Net, and efficient fractal U-Net, that can create highly accurate segmentation maps. The first part of our contribution makes use of EfficientNet to distribute resources in the network efficiently. The second part of our work applies the following layer connections to design the U-Net decoders: residual connections, dense connections, and fractal expansion. We apply EfficientNet as the encoder to our three decoders to design three conceivable models.

RESULTS

The aforementioned three proposed deep learning models were tested on four benchmark datasets, including the CHASE DB1 and digital retinal images for vessel extraction (DRIVE) retinal image databases and the ISIC 2018 and HAM10000 dermoscopy image databases. We obtained the highest Dice coefficient of 0.8013, 0.8808, 0.8019, and 0.9295 for CHASE DB1, ISIC 2018, DRIVE, and HAM10000, respectively, and a Jaccard (JAC) score of 0.6686, 0.7870, 0.6694, and 0.8683 for CHASE DB1, ISIC 2018, DRIVE, and HAM10000, respectively. Statistical analysis revealed that the proposed deep learning models achieved better segmentation results compared with the state-of-the-art models.

CONCLUSIONS

U-Net is quite an adaptable deep learning framework and can be integrated with other deep learning techniques. The use of recurrent feedback connections, dense convolution, residual skip connections, and fractal convolutional expansions allow for the design of improved deeper U-Net models. With the addition of EfficientNet, we can now leverage the performance of an optimally scaled classifier for U-Net encoders.

摘要

目的

U-Net是一种深度学习技术,在医学图像分割方面做出了重大贡献。尽管深度学习算法在图像处理方面的成就显而易见,但要实现类似人类的性能仍需克服许多挑战。构建更深层次的U-Net的主要挑战之一是黑箱问题,如梯度消失。克服这个问题使我们能够开发具有先进网络设计的神经网络。

方法

我们提出了三种U-Net变体,即高效R2U-Net、高效密集U-Net和高效分形U-Net,它们可以创建高度准确的分割图。我们贡献的第一部分利用EfficientNet在网络中有效地分配资源。我们工作的第二部分应用以下层连接来设计U-Net解码器:残差连接、密集连接和分形扩展。我们将EfficientNet作为编码器应用于我们的三个解码器,以设计三个可想象的模型。

结果

上述三种提出的深度学习模型在四个基准数据集上进行了测试,包括CHASE DB1和用于血管提取的数字视网膜图像(DRIVE)视网膜图像数据库以及ISIC 2018和HAM10000皮肤镜图像数据库。对于CHASE DB1、ISIC 2018、DRIVE和HAM10000,我们分别获得了最高的Dice系数0.8013、0.8808、0.8019和0.9295,以及Jaccard(JAC)分数0.6686、0.7870、0.6694和0.8683。统计分析表明,与现有最先进的模型相比,提出的深度学习模型取得了更好的分割结果。

结论

U-Net是一个非常适应性强的深度学习框架,可以与其他深度学习技术集成。循环反馈连接、密集卷积、残差跳跃连接和分形卷积扩展的使用允许设计改进的更深层次的U-Net模型。通过添加EfficientNet,我们现在可以利用最佳缩放分类器对U-Net编码器的性能。

相似文献

5
Recurrent residual U-Net for medical image segmentation.用于医学图像分割的循环残差U-Net
J Med Imaging (Bellingham). 2019 Jan;6(1):014006. doi: 10.1117/1.JMI.6.1.014006. Epub 2019 Mar 27.
6
DENSE-INception U-net for medical image segmentation.基于密集卷积 Inception 的 U-Net 网络在医学图像分割中的应用
Comput Methods Programs Biomed. 2020 Aug;192:105395. doi: 10.1016/j.cmpb.2020.105395. Epub 2020 Feb 15.

本文引用的文献

1
Image Segmentation Using Deep Learning: A Survey.基于深度学习的图像分割技术综述。
IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3523-3542. doi: 10.1109/TPAMI.2021.3059968. Epub 2022 Jun 3.
2
CSNet: A new DeepNet framework for ischemic stroke lesion segmentation.CSNet:一种用于缺血性中风病变分割的新型深度网络框架。
Comput Methods Programs Biomed. 2020 Sep;193:105524. doi: 10.1016/j.cmpb.2020.105524. Epub 2020 May 1.
3
Recurrent residual U-Net for medical image segmentation.用于医学图像分割的循环残差U-Net
J Med Imaging (Bellingham). 2019 Jan;6(1):014006. doi: 10.1117/1.JMI.6.1.014006. Epub 2019 Mar 27.
7
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
8
Deep Learning in Medical Image Analysis.医学图像分析中的深度学习
Annu Rev Biomed Eng. 2017 Jun 21;19:221-248. doi: 10.1146/annurev-bioeng-071516-044442. Epub 2017 Mar 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验