Siddique Nahian, Paheding Sidike, Reyes Angulo Abel A, Alom Md Zahangir, Devabhaktuni Vijay K
Purdue University Northwest, Department of Electrical and Computer Engineering, Hammond, Indiana, United States.
Michigan Technological University, Department of Applied Computing, Houghton, Michigan, United States.
J Med Imaging (Bellingham). 2022 Nov;9(6):064004. doi: 10.1117/1.JMI.9.6.064004. Epub 2022 Dec 24.
U-Net is a deep learning technique that has made significant contributions to medical image segmentation. Although the accomplishments of deep learning algorithms in terms of image processing are evident, many challenges still need to be overcome to achieve human-like performance. One of the main challenges in building deeper U-Nets is black-box problems, such as vanishing gradients. Overcoming this problem allows us to develop neural networks with advanced network designs.
We propose three U-Net variants, namely efficient R2U-Net, efficient dense U-Net, and efficient fractal U-Net, that can create highly accurate segmentation maps. The first part of our contribution makes use of EfficientNet to distribute resources in the network efficiently. The second part of our work applies the following layer connections to design the U-Net decoders: residual connections, dense connections, and fractal expansion. We apply EfficientNet as the encoder to our three decoders to design three conceivable models.
The aforementioned three proposed deep learning models were tested on four benchmark datasets, including the CHASE DB1 and digital retinal images for vessel extraction (DRIVE) retinal image databases and the ISIC 2018 and HAM10000 dermoscopy image databases. We obtained the highest Dice coefficient of 0.8013, 0.8808, 0.8019, and 0.9295 for CHASE DB1, ISIC 2018, DRIVE, and HAM10000, respectively, and a Jaccard (JAC) score of 0.6686, 0.7870, 0.6694, and 0.8683 for CHASE DB1, ISIC 2018, DRIVE, and HAM10000, respectively. Statistical analysis revealed that the proposed deep learning models achieved better segmentation results compared with the state-of-the-art models.
U-Net is quite an adaptable deep learning framework and can be integrated with other deep learning techniques. The use of recurrent feedback connections, dense convolution, residual skip connections, and fractal convolutional expansions allow for the design of improved deeper U-Net models. With the addition of EfficientNet, we can now leverage the performance of an optimally scaled classifier for U-Net encoders.
U-Net是一种深度学习技术,在医学图像分割方面做出了重大贡献。尽管深度学习算法在图像处理方面的成就显而易见,但要实现类似人类的性能仍需克服许多挑战。构建更深层次的U-Net的主要挑战之一是黑箱问题,如梯度消失。克服这个问题使我们能够开发具有先进网络设计的神经网络。
我们提出了三种U-Net变体,即高效R2U-Net、高效密集U-Net和高效分形U-Net,它们可以创建高度准确的分割图。我们贡献的第一部分利用EfficientNet在网络中有效地分配资源。我们工作的第二部分应用以下层连接来设计U-Net解码器:残差连接、密集连接和分形扩展。我们将EfficientNet作为编码器应用于我们的三个解码器,以设计三个可想象的模型。
上述三种提出的深度学习模型在四个基准数据集上进行了测试,包括CHASE DB1和用于血管提取的数字视网膜图像(DRIVE)视网膜图像数据库以及ISIC 2018和HAM10000皮肤镜图像数据库。对于CHASE DB1、ISIC 2018、DRIVE和HAM10000,我们分别获得了最高的Dice系数0.8013、0.8808、0.8019和0.9295,以及Jaccard(JAC)分数0.6686、0.7870、0.6694和0.8683。统计分析表明,与现有最先进的模型相比,提出的深度学习模型取得了更好的分割结果。
U-Net是一个非常适应性强的深度学习框架,可以与其他深度学习技术集成。循环反馈连接、密集卷积、残差跳跃连接和分形卷积扩展的使用允许设计改进的更深层次的U-Net模型。通过添加EfficientNet,我们现在可以利用最佳缩放分类器对U-Net编码器的性能。