Suppr超能文献

基于超广角荧光素血管造影和深度学习的糖尿病视网膜病变自动分级。

Automated Grading of Diabetic Retinopathy with Ultra-Widefield Fluorescein Angiography and Deep Learning.

机构信息

Eye Center, Renmin Hospital of Wuhan University, Wuhan, China.

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.

出版信息

J Diabetes Res. 2021 Sep 8;2021:2611250. doi: 10.1155/2021/2611250. eCollection 2021.

Abstract

PURPOSE

The objective of this study was to establish diagnostic technology to automatically grade the severity of diabetic retinopathy (DR) according to the ischemic index and leakage index with ultra-widefield fluorescein angiography (UWFA) and the Early Treatment Diabetic Retinopathy Study (ETDRS) 7-standard field (7-SF).

METHODS

This is a cross-sectional study. UWFA samples from 280 diabetic patients and 119 normal patients were used to train and test an artificial intelligence model to differentiate PDR and NPDR based on the ischemic index and leakage index with UWFA. A panel of retinal specialists determined the ground truth for our data set before experimentation. A confusion matrix as a metric was used to measure the precision of our algorithm, and a simple linear regression function was implemented to explore the discrimination of indexes on the DR grades. In addition, the model was tested with simulated 7-SF.

RESULTS

The model classification of DR in the original UWFA images achieved 88.50% accuracy and 73.68% accuracy in the simulated 7-SF images. A simple linear regression function demonstrated that there is a significant relationship between the ischemic index and leakage index and the severity of DR. These two thresholds were set to classify the grade of DR, which achieved 76.8% accuracy.

CONCLUSIONS

The optimization of the cycle generative adversarial network (CycleGAN) and convolutional neural network (CNN) model classifier achieved DR grading based on the ischemic index and leakage index with UWFA and simulated 7-SF and provided accurate inference results. The classification accuracy with UWFA is slightly higher than that of simulated 7-SF.

摘要

目的

本研究旨在建立一种诊断技术,根据超广角荧光素血管造影(UWFA)和早期糖尿病视网膜病变研究(ETDRS)7 标准视野(7-SF)的缺血指数和渗漏指数,自动对糖尿病性视网膜病变(DR)的严重程度进行分级。

方法

这是一项横断面研究。使用 280 例糖尿病患者和 119 例正常患者的 UWFA 样本,训练和测试人工智能模型,根据 UWFA 的缺血指数和渗漏指数,区分 PDR 和 NPDR。在实验前,一组视网膜专家确定了我们数据集的真实情况。混淆矩阵作为一种衡量标准,用于测量我们算法的精度,并且实现了一个简单的线性回归函数,以探索指标对 DR 分级的鉴别能力。此外,还对模拟的 7-SF 进行了模型测试。

结果

在原始 UWFA 图像中,DR 模型分类的准确率为 88.50%,在模拟的 7-SF 图像中的准确率为 73.68%。简单的线性回归函数表明,缺血指数和渗漏指数与 DR 的严重程度之间存在显著关系。这两个阈值用于对 DR 分级进行分类,准确率达到 76.8%。

结论

优化的循环生成对抗网络(CycleGAN)和卷积神经网络(CNN)模型分类器实现了基于 UWFA 和模拟的 7-SF 的缺血指数和渗漏指数的 DR 分级,并提供了准确的推断结果。UWFA 的分类准确率略高于模拟的 7-SF。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4690/8445732/0b57382d602e/JDR2021-2611250.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验