Suppr超能文献

基于结构的虚拟筛选和DrugBank数据库的分子动力学模拟鉴定严重急性呼吸综合征冠状病毒2主蛋白酶抑制剂

Identification of SARS-CoV-2 Main Protease Inhibitors Using Structure Based Virtual Screening and Molecular Dynamics Simulation of DrugBank Database.

作者信息

Debnath Pradip, Bhaumik Samhita, Sen Debanjan, Muttineni Ravi K, Debnath Sudhan

机构信息

Department of Chemistry Maharaja Bir Bikram College Agartala Tripura 799004 India.

Department of Chemistry Women's College Agartala Tripura 799001 India.

出版信息

ChemistrySelect. 2021 May 27;6(20):4991-5013. doi: 10.1002/slct.202100854. Epub 2021 Jun 18.

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is highly pathogenic to humans and has created an unprecedented global health care threat. Globally, intense efforts are going on to discover a vaccine or new drug molecules to control the COVID-19. However, till today, there is no effective therapeutics or treatment available for COVID-19. In this study, we aim to find out potential small molecule inhibitors for SARS-CoV-2 main protease (M) from the known DrugBank database version 5.1.8. We applied structure-based virtual screening of the database containing 11875 numbers of drug candidates to identify potential hits for SARS-CoV-2 M inhibitors. Seven potential inhibitors having admirable XP glide score ranging from -15.071 to -8.704 kcal/mol and good binding affinity with the active sites amino acids of M were identified. The selected hits were further analyzed with 50 ns molecular dynamics (MD) simulation to examine the stability of protein-ligand complexes. The root mean square deviation and potential energy plot indicates the stability of the complexes during the 50 ns MD simulation. The MM-GBSA analysis also showed good binding energy of the selected hits (-83.2718 to -58.6618 kcal/mol). Further analysis revealed critical hydrogen bonds and hydrophobic interactions between compounds and the target protein. The compounds bind to biologically important regions of M, indicating their potential to inhibit the functionality of this component.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)对人类具有高度致病性,并造成了前所未有的全球医疗威胁。在全球范围内,人们正在全力以赴寻找控制新型冠状病毒肺炎(COVID-19)的疫苗或新的药物分子。然而,直到今天,仍没有针对COVID-19的有效治疗方法或治疗手段。在本研究中,我们旨在从已知的DrugBank数据库5.1.8版本中找出针对SARS-CoV-2主要蛋白酶(M)的潜在小分子抑制剂。我们对包含11875个候选药物的数据库进行了基于结构的虚拟筛选,以确定SARS-CoV-2 M抑制剂的潜在命中物。鉴定出了七种潜在抑制剂,其具有令人满意的XP glide评分,范围为-15.071至-8.704 kcal/mol,并且与M的活性位点氨基酸具有良好的结合亲和力。对选定的命中物进一步进行了长达50 ns的分子动力学(MD)模拟分析,以检验蛋白质-配体复合物的稳定性。均方根偏差和势能图表明了复合物在50 ns MD模拟过程中的稳定性。MM-GBSA分析还显示了选定命中物的良好结合能(-83.2718至-58.6618 kcal/mol)。进一步分析揭示了化合物与靶蛋白之间的关键氢键和疏水相互作用。这些化合物与M的生物学重要区域结合,表明它们具有抑制该组分功能的潜力。

相似文献

引用本文的文献

本文引用的文献

4
Coronavirus Disease 2019 (COVID-19) Pandemic and Economic Impact.2019年冠状病毒病(COVID-19)大流行与经济影响。
Pak J Med Sci. 2020 May;36(COVID19-S4):S73-S78. doi: 10.12669/pjms.36.COVID19-S4.2638.
5
Deep Learning Based Drug Screening for Novel Coronavirus 2019-nCov.基于深度学习的新型冠状病毒 2019-nCov 药物筛选。
Interdiscip Sci. 2020 Sep;12(3):368-376. doi: 10.1007/s12539-020-00376-6. Epub 2020 Jun 1.
7
Candidate drugs against SARS-CoV-2 and COVID-19.针对 SARS-CoV-2 和 COVID-19 的候选药物。
Pharmacol Res. 2020 Jul;157:104859. doi: 10.1016/j.phrs.2020.104859. Epub 2020 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验