Suppr超能文献

使用人工神经网络识别高危COVID-19患者的前瞻性研究。

Prospective study using artificial neural networks for identification of high-risk COVID-19 patients.

作者信息

Frausto-Avila Mateo, León-Montiel Roberto de J, Quiroz-Juárez Mario A, U'Ren Alfred B

机构信息

Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230, Querétaro, Mexico.

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510, Mexico, CDMX, Mexico.

出版信息

Sci Rep. 2025 May 23;15(1):18005. doi: 10.1038/s41598-025-00925-3.

Abstract

The COVID-19 pandemic caused a major public health crisis, with severe impacts on global health and the economy. Machine learning (ML) has been crucial in developing new technologies to address challenges posed by the pandemic, particularly in identifying high-risk COVID-19 patients. This identification is vital for efficiently allocating hospital resources and controlling the virus's spread. Comprehensive validation of these intelligent approaches is necessary to confirm their clinical usefulness and help create future strategies for managing viral outbreaks. Here we present a prospective study to evaluate the performance of state-of-the-art ML models designed to identify high-risk COVID-19 patients across four clinical stages. Using artificial neural networks trained with historical patient data from Mexico, we assess the models' accuracy across six epidemiological waves without retraining them. We then compare their performance against neural networks trained with cumulative historical data up to the end of each wave. The findings reveal that models trained on early data can effectively predict high-risk patients in later waves, despite changes in vaccination rates, viral strains, and treatments. These results suggest that artificial intelligence-based patient classification methods could be robust tools for future pandemics, aiding in predicting clinical outcomes under evolving conditions.

摘要

新冠疫情引发了一场重大公共卫生危机,对全球健康和经济造成了严重影响。机器学习在开发应对疫情挑战的新技术方面发挥了关键作用,尤其是在识别新冠高危患者方面。这种识别对于有效分配医院资源和控制病毒传播至关重要。对这些智能方法进行全面验证,对于确认其临床实用性以及帮助制定未来管理病毒爆发的策略很有必要。在此,我们开展了一项前瞻性研究,以评估旨在识别四个临床阶段新冠高危患者的前沿机器学习模型的性能。我们使用来自墨西哥的历史患者数据训练人工神经网络,在不重新训练模型的情况下评估模型在六个疫情波次中的准确性。然后,我们将其性能与在每个波次结束时使用累积历史数据训练的神经网络进行比较。研究结果表明,尽管疫苗接种率、病毒毒株和治疗方法有所变化,但基于早期数据训练的模型能够有效预测后期波次中的高危患者。这些结果表明,基于人工智能的患者分类方法可能是应对未来疫情的有力工具,有助于在不断变化的条件下预测临床结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb5b/12102217/c8d0031271ce/41598_2025_925_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验