Frausto-Avila Mateo, León-Montiel Roberto de J, Quiroz-Juárez Mario A, U'Ren Alfred B
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230, Querétaro, Mexico.
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510, Mexico, CDMX, Mexico.
Sci Rep. 2025 May 23;15(1):18005. doi: 10.1038/s41598-025-00925-3.
The COVID-19 pandemic caused a major public health crisis, with severe impacts on global health and the economy. Machine learning (ML) has been crucial in developing new technologies to address challenges posed by the pandemic, particularly in identifying high-risk COVID-19 patients. This identification is vital for efficiently allocating hospital resources and controlling the virus's spread. Comprehensive validation of these intelligent approaches is necessary to confirm their clinical usefulness and help create future strategies for managing viral outbreaks. Here we present a prospective study to evaluate the performance of state-of-the-art ML models designed to identify high-risk COVID-19 patients across four clinical stages. Using artificial neural networks trained with historical patient data from Mexico, we assess the models' accuracy across six epidemiological waves without retraining them. We then compare their performance against neural networks trained with cumulative historical data up to the end of each wave. The findings reveal that models trained on early data can effectively predict high-risk patients in later waves, despite changes in vaccination rates, viral strains, and treatments. These results suggest that artificial intelligence-based patient classification methods could be robust tools for future pandemics, aiding in predicting clinical outcomes under evolving conditions.
新冠疫情引发了一场重大公共卫生危机,对全球健康和经济造成了严重影响。机器学习在开发应对疫情挑战的新技术方面发挥了关键作用,尤其是在识别新冠高危患者方面。这种识别对于有效分配医院资源和控制病毒传播至关重要。对这些智能方法进行全面验证,对于确认其临床实用性以及帮助制定未来管理病毒爆发的策略很有必要。在此,我们开展了一项前瞻性研究,以评估旨在识别四个临床阶段新冠高危患者的前沿机器学习模型的性能。我们使用来自墨西哥的历史患者数据训练人工神经网络,在不重新训练模型的情况下评估模型在六个疫情波次中的准确性。然后,我们将其性能与在每个波次结束时使用累积历史数据训练的神经网络进行比较。研究结果表明,尽管疫苗接种率、病毒毒株和治疗方法有所变化,但基于早期数据训练的模型能够有效预测后期波次中的高危患者。这些结果表明,基于人工智能的患者分类方法可能是应对未来疫情的有力工具,有助于在不断变化的条件下预测临床结果。