Suppr超能文献

高效包载盐酸多柔比星于金属-有机骨架用于协同化学疗法和化学动力学疗法。

Highly Efficient Encapsulation of Doxorubicin Hydrochloride in Metal-Organic Frameworks for Synergistic Chemotherapy and Chemodynamic Therapy.

机构信息

State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

出版信息

ACS Biomater Sci Eng. 2021 Oct 11;7(10):4999-5006. doi: 10.1021/acsbiomaterials.1c00874. Epub 2021 Sep 22.

Abstract

Iron-based metal-organic frameworks (MOFs) have been reported to have great potential for encapsulating doxorubicin hydrochloride (DOX), which is a frequently used anthracycline anticancer drug. However, developing a facile approach to realize high loading capacity and efficiency as well as controlled release of DOX in MOFs remains a huge challenge. Herein, we synthesized water-stable MIL-101(Fe)-CH through a microwave-assisted method. It was found the nano-MOFs acted as nanosponges when soaked in a DOX alkaline aqueous solution with a loading capacity experimentally up to 24.5 wt %, while maintaininga loading efficiency as high as 98%. The mechanism of the interaction between DOX and nanoMOFs was investigated by absorption spectra and density functional theory (DFT) calculations, which revealed that the deprotonated DOX was electrostatically adsorbed to the unsaturated FeOCl(COO)·HO (named Fe trimers). In addition, the as-designed poly(ethylene glycol--propylene glycol) (F127) modified nanoparticles (F127-DOX-MIL) could be decomposed under the stimulation of glutathione (GSH) and ATP. As a result, DOX and Fe(III) ions were released, and they could undergo a Fenton-like reaction with the endogenous HO to generate the highly toxic hydroxyl radical (·OH). The in vitro experiments indicated that F127-DOX-MIL could cause remarkable Hela cells inhibition through chemotherapy and chemodynamic therapy. Our study provides a new strategy to design a GSH/ATP-responsive drug-delivery nanosystem for chemo/chemodynamic therapy.

摘要

铁基金属有机骨架(MOFs)已被报道在包封盐酸阿霉素(DOX)方面具有巨大潜力,DOX 是一种常用的蒽环类抗癌药物。然而,开发一种简便的方法来实现 MOFs 中 DOX 的高负载量和高效率以及控制释放仍然是一个巨大的挑战。在此,我们通过微波辅助方法合成了水稳定的 MIL-101(Fe)-CH。研究发现,纳米 MOFs 在浸入 DOX 碱性水溶液中时充当纳米海绵,其负载量实验可达 24.5wt%,同时保持高达 98%的负载效率。通过吸收光谱和密度泛函理论(DFT)计算研究了 DOX 与纳米 MOFs 之间的相互作用机制,结果表明去质子化的 DOX 被静电吸附到不饱和的 FeOCl(COO)·HO(称为 Fe 三聚体)上。此外,设计的聚(乙二醇-丙二醇)(F127)修饰的纳米粒子(F127-DOX-MIL)可以在谷胱甘肽(GSH)和三磷酸腺苷(ATP)的刺激下分解。结果,释放了 DOX 和 Fe(III)离子,它们可以与内源性 HO 发生类 Fenton 反应生成高毒性的羟基自由基(·OH)。体外实验表明,F127-DOX-MIL 通过化学疗法和化学动力学疗法可以显著抑制 Hela 细胞。我们的研究为设计用于化学/化学动力学治疗的 GSH/ATP 响应型药物递送纳米系统提供了一种新策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验