Suppr超能文献

通过多组学综合分析揭示新冠病毒的风险基因

Unraveling Risk Genes of COVID-19 by Multi-Omics Integrative Analyses.

作者信息

Baranova Ancha, Cao Hongbao, Zhang Fuquan

机构信息

School of Systems Biology, George Mason University, Manassas, VA, United States.

Research Centre for Medical Genetics, Moscow, Russia.

出版信息

Front Med (Lausanne). 2021 Sep 7;8:738687. doi: 10.3389/fmed.2021.738687. eCollection 2021.

Abstract

Uncovering the genetic basis of COVID-19 may shed insight into its pathogenesis and help to improve treatment measures. We aimed to investigate the host genetic variants associated with COVID-19. The summary result of a COVID-19 GWAS (9,373 hospitalized COVID-19 cases and 1,197,256 controls) was obtained from the COVID-19 Host Genetic Initiative GWAS meta-analyses. We tested colocalization of the GWAS signals of COVID-19 with expression and methylation quantitative traits loci (eQTL and mQTL, respectively) using the summary data-based Mendelian randomization (SMR) analysis. Four eQTL and two mQTL datasets were utilized in the SMR analysis, including CAGE blood eQTL data ( = 2,765), GTEx v7 blood ( = 338) and lung ( = 278) eQTL data, Geuvadis lymphoblastoid cells eQTL data, LBC-BSGS blood mQTL data ( = 1,980), and Hannon blood mQTL summary data ( = 1,175). We conducted a transcriptome-wide association study (TWAS) on COVID-19 with precomputed prediction models of GTEx v8 eQTL in lung and blood using S-PrediXcan. Our SMR analyses identified seven protein-coding genes (, and ) associated with COVID-19, including two novel risk genes, and tau-encoding . The TWAS revealed four genes for COVID-19 (, and ), including two novel risk genes, and . Our study highlighted the functional relevance of some known genome-wide risk genes of COVID-19 and revealed novel genes contributing to differential outcomes of COVID-19 disease.

摘要

揭示新冠病毒病的遗传基础可能有助于深入了解其发病机制,并有助于改进治疗措施。我们旨在研究与新冠病毒病相关的宿主基因变异。从新冠病毒病宿主遗传计划全基因组关联研究(GWAS)荟萃分析中获得了一项新冠病毒病GWAS的汇总结果(9373例住院新冠病毒病病例和1197256例对照)。我们使用基于汇总数据的孟德尔随机化(SMR)分析,测试了新冠病毒病GWAS信号与表达和甲基化数量性状基因座(分别为eQTL和mQTL)的共定位。在SMR分析中使用了四个eQTL和两个mQTL数据集,包括CAGE血液eQTL数据(n = 2765)、GTEx v7血液(n = 338)和肺(n = 278)eQTL数据、Geuvadis淋巴母细胞系eQTL数据、LBC - BSGS血液mQTL数据(n = 1980)以及Hannon血液mQTL汇总数据(n = 1175)。我们使用S - PrediXcan对新冠病毒病进行了转录组范围的关联研究(TWAS),采用了预先计算的GTEx v8肺和血液eQTL预测模型。我们的SMR分析确定了七个与新冠病毒病相关的蛋白质编码基因(、和),包括两个新的风险基因和编码tau的。TWAS揭示了四个与新冠病毒病相关的基因(、和),包括两个新风险基因和。我们的研究突出了一些已知的新冠病毒病全基因组风险基因的功能相关性,并揭示了导致新冠病毒病不同结果的新基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cec/8452849/271b61393c3d/fmed-08-738687-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验