Centro de Epidemiología y Políticas de Salud, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile.
Centro de Modelamiento Matemático (CNRS UMI 2807), Universidad de Chile, Santiago, Chile.
J Math Biol. 2021 Sep 25;83(4):42. doi: 10.1007/s00285-021-01669-0.
Nonpharmaceutical interventions (NPI) such as banning public events or instituting lockdowns have been widely applied around the world to control the current COVID-19 pandemic. Typically, this type of intervention is imposed when an epidemiological indicator in a given population exceeds a certain threshold. Then, the nonpharmaceutical intervention is lifted when the levels of the indicator used have decreased sufficiently. What is the best indicator to use? In this paper, we propose a mathematical framework to try to answer this question. More specifically, the proposed framework permits to assess and compare different event-triggered controls based on epidemiological indicators. Our methodology consists of considering some outcomes that are consequences of the nonpharmaceutical interventions that a decision maker aims to make as low as possible. The peak demand for intensive care units (ICU) and the total number of days in lockdown are examples of such outcomes. If an epidemiological indicator is used to trigger the interventions, there is naturally a trade-off between the outcomes that can be seen as a curve parameterized by the trigger threshold to be used. The computation of these curves for a group of indicators then allows the selection of the best indicator the curve of which dominates the curves of the other indicators. This methodology is illustrated with indicators in the context of COVID-19 using deterministic compartmental models in discrete-time, although the framework can be adapted for a larger class of models.
非药物干预(NPI),如禁止公共活动或实施封锁,已在全球范围内广泛应用于控制当前的 COVID-19 大流行。通常,当特定人群中的流行病学指标超过某个阈值时,就会实施这种干预措施。然后,当使用的指标水平下降到足够低时,非药物干预就会解除。使用哪种指标最佳?在本文中,我们提出了一个数学框架来试图回答这个问题。更具体地说,所提出的框架允许根据流行病学指标评估和比较不同的基于事件触发的控制。我们的方法包括考虑一些结果,这些结果是决策者旨在尽可能降低的非药物干预的后果。对重症监护病房(ICU)的需求峰值和封锁的总天数就是这种结果的例子。如果使用流行病学指标来触发干预措施,那么可以将可以看到的结果视为与要使用的触发阈值相关的曲线参数,这两者之间自然存在权衡。然后,为一组指标计算这些曲线,可以选择最佳的指标,其曲线支配其他指标的曲线。使用离散时间确定性房室模型在 COVID-19 背景下使用该方法来对指标进行说明,尽管该框架可以适用于更大类别的模型。