Suppr超能文献

基于功能磁共振成像(fMRI)数据对发育性阅读障碍脑基础识别的可视化解释

Visual Explanation for Identification of the Brain Bases for Developmental Dyslexia on fMRI Data.

作者信息

Tomaz Da Silva Laura, Esper Nathalia Bianchini, Ruiz Duncan D, Meneguzzi Felipe, Buchweitz Augusto

机构信息

School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.

Graduate School of Medicine, Neurosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.

出版信息

Front Comput Neurosci. 2021 Sep 9;15:594659. doi: 10.3389/fncom.2021.594659. eCollection 2021.

Abstract

Brain imaging studies of mental health and neurodevelopmental disorders have recently included machine learning approaches to identify patients based solely on their brain activation. The goal is to identify brain-related features that generalize from smaller samples of data to larger ones; in the case of neurodevelopmental disorders, finding these patterns can help understand differences in brain function and development that underpin early signs of risk for developmental dyslexia. The success of machine learning classification algorithms on neurofunctional data has been limited to typically homogeneous data sets of few dozens of participants. More recently, larger brain imaging data sets have allowed for deep learning techniques to classify brain states and clinical groups solely from neurofunctional features. Indeed, deep learning techniques can provide helpful tools for classification in healthcare applications, including classification of structural 3D brain images. The adoption of deep learning approaches allows for incremental improvements in classification performance of larger functional brain imaging data sets, but still lacks diagnostic insights about the underlying brain mechanisms associated with disorders; moreover, a related challenge involves providing more clinically-relevant explanations from the neural features that inform classification. We target this challenge by leveraging two network visualization techniques in convolutional neural network layers responsible for learning high-level features. Using such techniques, we are able to provide meaningful images for expert-backed insights into the condition being classified. We address this challenge using a dataset that includes children diagnosed with developmental dyslexia, and typical reader children. Our results show accurate classification of developmental dyslexia (94.8%) from the brain imaging alone, while providing automatic visualizations of the features involved that match contemporary neuroscientific knowledge (brain regions involved in the reading process for the dyslexic reader group and brain regions associated with strategic control and attention processes for the typical reader group). Our visual explanations of deep learning models turn the accurate yet opaque conclusions from the models into evidence to the condition being studied.

摘要

心理健康和神经发育障碍的脑成像研究最近采用了机器学习方法,仅根据大脑激活情况来识别患者。目标是识别与大脑相关的特征,这些特征能够从较小的数据样本推广到较大的数据样本;就神经发育障碍而言,找到这些模式有助于理解大脑功能和发育的差异,这些差异是发育性阅读障碍早期风险迹象的基础。机器学习分类算法在神经功能数据上的成功仅限于通常由几十名参与者组成的同质性数据集。最近,更大的脑成像数据集使得深度学习技术能够仅根据神经功能特征对脑状态和临床组进行分类。事实上,深度学习技术可以为医疗保健应用中的分类提供有用的工具,包括对结构性3D脑图像的分类。采用深度学习方法可以逐步提高更大功能脑成像数据集的分类性能,但仍然缺乏对与疾病相关的潜在脑机制的诊断见解;此外,一个相关的挑战是从为分类提供信息的神经特征中提供更多与临床相关的解释。我们通过在负责学习高级特征的卷积神经网络层中利用两种网络可视化技术来应对这一挑战。使用这些技术,我们能够提供有意义的图像,以便专家对被分类的病症进行有依据的洞察。我们使用一个包含被诊断为发育性阅读障碍的儿童和典型阅读儿童的数据集来应对这一挑战。我们的结果表明,仅通过脑成像就能准确分类发育性阅读障碍(94.8%),同时还能自动可视化所涉及的特征,这些特征与当代神经科学知识相匹配(阅读障碍读者组中参与阅读过程的脑区以及典型读者组中与策略控制和注意力过程相关的脑区)。我们对深度学习模型的可视化解释将模型中准确但不透明的结论转化为对所研究病症的证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7e3/8458961/f1127b5446c4/fncom-15-594659-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验