Podbiel Daniel, Laermer Franz, Zengerle Roland, Hoffmann Jochen
Robert Bosch GmbH, Corporate Sector Research, Microsystems and Nanotechnologies, Robert-Bosch-Campus 1, 71272 Renningen, Germany.
IMTEK - Department of Microsystems Engineering, University of Freiburg Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
Microsyst Nanoeng. 2020 Oct 5;6:82. doi: 10.1038/s41378-020-00187-1. eCollection 2020.
We report on the development of a microfluidic multiplexing technology for highly parallelized sample analysis via quantitative polymerase chain reaction (PCR) in an array of 96 nanoliter-scale microcavities made from silicon. This PCR array technology features fully automatable aliquoting microfluidics, a robust sample compartmentalization up to temperatures of 95 °C, and an application-specific prestorage of reagents within the 25 nl microcavities. The here presented hybrid silicon-polymer microfluidic chip allows both a rapid thermal cycling of the liquid compartments and a real-time fluorescence read-out for a tracking of the individual amplification reactions taking place inside the microcavities. We demonstrate that the technology provides very low reagent carryover of prestored reagents < 6 × 10 and a cross talk rate < 1 × 10 per PCR cycle, which facilitate a multi-targeted sample analysis via geometric multiplexing. Furthermore, we apply this PCR array technology to introduce a novel digital PCR-based DNA quantification method: by taking the assay-specific amplification characteristics like the limit of detection into account, the method allows for an absolute gene target quantification by means of a statistical analysis of the amplification results.
我们报告了一种微流控多重技术的开发情况,该技术用于在由硅制成的96个纳升规模微腔阵列中通过定量聚合酶链反应(PCR)进行高度并行的样品分析。这种PCR阵列技术具有完全自动化的等分微流控技术、在高达95°C的温度下强大的样品分隔能力,以及在25 nl微腔内对试剂进行特定应用的预存储功能。本文展示的硅-聚合物混合微流控芯片既允许液体隔室进行快速热循环,又能进行实时荧光读出,以跟踪微腔内发生的单个扩增反应。我们证明该技术提供了极低的预存储试剂残留率<6×10,每个PCR循环的串扰率<1×10,这有助于通过几何多重分析进行多靶点样品分析。此外,我们应用这种PCR阵列技术引入了一种基于数字PCR的新型DNA定量方法:通过考虑检测限等特定检测的扩增特性,该方法允许通过对扩增结果进行统计分析来进行绝对基因靶点定量。