Suppr超能文献

一种使用计算机断层扫描诊断新冠肺炎的实用人工智能系统:一项多国家外部验证研究。

A practical artificial intelligence system to diagnose COVID-19 using computed tomography: A multinational external validation study.

作者信息

Ardakani Ali Abbasian, Kwee Robert M, Mirza-Aghazadeh-Attari Mohammad, Castro Horacio Matías, Kuzan Taha Yusuf, Altintoprak Kübra Murzoğlu, Besutti Giulia, Monelli Filippo, Faeghi Fariborz, Acharya U Rajendra, Mohammadi Afshin

机构信息

Radiology Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Department of Radiology, Zuyderland Medical Center, Heerlen/Sittard-Geleen, the Netherlands.

出版信息

Pattern Recognit Lett. 2021 Dec;152:42-49. doi: 10.1016/j.patrec.2021.09.012. Epub 2021 Sep 23.

Abstract

Computed tomography has gained an important role in the early diagnosis of COVID-19 pneumonia. However, the ever-increasing number of patients has overwhelmed radiology departments and has caused a reduction in quality of services. Artificial intelligence (AI) systems are the remedy to the current situation. However, the lack of application in real-world conditions has limited their consideration in clinical settings. This study validated a clinical AI system, COVIDiag, to aid radiologists in accurate and rapid evaluation of COVID-19 cases. 50 COVID-19 and 50 non-COVID-19 pneumonia cases were included from each of five centers: Argentina, Turkey, Iran, Netherlands, and Italy. The Dutch database included only 50 COVID-19 cases. The performance parameters namely sensitivity, specificity, accuracy, and area under the ROC curve (AUC) were computed for each database using COVIDiag model. The most common pattern of involvement among COVID-19 cases in all databases were bilateral involvement of upper and lower lobes with ground-glass opacities. The best sensitivity of 92.0% was recorded for the Italian database. The system achieved an AUC of 0.983, 0.914, 0.910, and 0.882 for Argentina, Turkey, Iran, and Italy, respectively. The model obtained a sensitivity of 86.0% for the Dutch database. COVIDiag model could diagnose COVID-19 pneumonia in all of cohorts with AUC of 0.921 (sensitivity, specificity, and accuracy of 88.8%, 87.0%, and 88.0%, respectively). Our study confirmed the accuracy of our proposed AI model (COVIDiag) in the diagnosis of COVID-19 cases. Furthermore, the system demonstrated consistent optimal diagnostic performance on multinational databases, which is critical to determine the generalizability and objectivity of the proposed COVIDiag model. Our results are significant as they provide real-world evidence regarding the applicability of AI systems in clinical medicine.

摘要

计算机断层扫描在新冠肺炎肺炎的早期诊断中发挥了重要作用。然而,患者数量的不断增加使放射科不堪重负,并导致服务质量下降。人工智能(AI)系统是解决当前状况的良方。然而,在实际情况下缺乏应用限制了它们在临床环境中的应用。本研究验证了一种临床人工智能系统COVIDiag,以帮助放射科医生准确、快速地评估新冠肺炎病例。来自阿根廷、土耳其、伊朗、荷兰和意大利这五个中心的各50例新冠肺炎病例和50例非新冠肺炎肺炎病例被纳入研究。荷兰数据库仅包含50例新冠肺炎病例。使用COVIDiag模型为每个数据库计算性能参数,即敏感性、特异性、准确性和ROC曲线下面积(AUC)。所有数据库中新冠肺炎病例最常见的受累模式是上下叶双侧受累并伴有磨玻璃影。意大利数据库记录的最佳敏感性为92.0%。该系统在阿根廷、土耳其、伊朗和意大利的AUC分别为0.983、0.914、0.910和0.882。该模型对荷兰数据库的敏感性为86.0%。COVIDiag模型能够在所有队列中诊断新冠肺炎肺炎,AUC为0.921(敏感性、特异性和准确性分别为88.8%、87.0%和88.0%)。我们的研究证实了我们提出的人工智能模型(COVIDiag)在诊断新冠肺炎病例方面的准确性。此外,该系统在跨国数据库上表现出一致的最佳诊断性能,这对于确定所提出的COVIDiag模型的普遍性和客观性至关重要。我们的结果具有重要意义,因为它们提供了关于人工智能系统在临床医学中适用性的真实世界证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ad9/8457921/8108f056a32d/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验