Sinha Sankhamita, Bhattacharya Subhayan, Roy Sarbani
Sankhamita Sinha, Meghnad Saha Institute of Technology, Kolkata, India.
J Supercomput. 2022;78(4):5450-5478. doi: 10.1007/s11227-021-04079-7. Epub 2021 Sep 24.
The behaviour of individual users in an online social network is a major contributing factor in determining the outcome of multiple network phenomenon. Group formation, growth of the network, information propagation, and rumour blocking are some of the many network behavioural traits that are influenced by the interaction patterns of the users in the network. Network motifs capture one such interaction pattern between users in online social networks (OSNs). For this work, four second-order (two-edged) network motifs have been considered, namely, message receiving pattern, message broadcasting pattern, message passing pattern, and reciprocal message pattern, to analyse user behaviour in online social networks. This work provides and utilizes a node interaction pattern-finding algorithm to identify the frequency of aforementioned second-order network motifs in six real-life online social networks (Facebook, GPlus, GNU, Twitter, Enron Email, and Wiki-vote). The frequency of network motifs participated in by a node is considered for the relative ranking of all nodes in the online social networks. The highest-rated nodes are considered seeds for information propagation. The performance of using network motifs for ranking nodes as seeds for information propagation is validated using statistical metrics Z-score, concentration, and significance profile and compared with baseline ranking methods in-degree centrality, out-degree centrality, closeness centrality, and PageRank. The comparative study shows the performance of centrality measures to be similar or better than second-order network motifs as seed nodes in information diffusion. The experimental results on finding frequencies and importance of different interaction patterns provide insights on the significance and representation of each such interaction pattern and how it varies from network to network.
在线社交网络中个体用户的行为是决定多种网络现象结果的一个主要因素。群体形成、网络增长、信息传播和谣言阻断是众多受网络中用户交互模式影响的网络行为特征中的一部分。网络基序捕捉了在线社交网络(OSN)中用户之间的一种这样的交互模式。对于这项工作,考虑了四种二阶(双边)网络基序,即消息接收模式、消息广播模式、消息传递模式和互惠消息模式,以分析在线社交网络中的用户行为。这项工作提供并利用一种节点交互模式发现算法来识别上述二阶网络基序在六个现实生活中的在线社交网络(Facebook、GPlus、GNU、Twitter、安然电子邮件和维基投票)中的出现频率。一个节点参与的网络基序的频率被用于在线社交网络中所有节点的相对排名。排名最高的节点被视为信息传播的种子节点。使用网络基序将节点作为信息传播种子进行排名的性能通过统计指标Z分数、集中度和显著性分布进行验证,并与度中心性、出度中心性、接近中心性和PageRank等基线排名方法进行比较。比较研究表明,在信息扩散中,中心性度量作为种子节点的性能与二阶网络基序相似或更好。关于不同交互模式的频率和重要性的实验结果提供了对每种此类交互模式的重要性和表示以及它如何因网络而异的见解。