Suppr超能文献

基于二阶网络连接统计量的同步。

Synchronization from second order network connectivity statistics.

机构信息

School of Mathematics, University of Minnesota Minneapolis, MN, USA.

出版信息

Front Comput Neurosci. 2011 Jul 8;5:28. doi: 10.3389/fncom.2011.00028. eCollection 2011.

Abstract

We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections, and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by their increasing the effective coupling strength. The decrease of synchrony with convergent connections is primarily due to the resulting heterogeneity in firing rates.

摘要

我们研究了网络结构如何在不依赖于每个神经元的动力学模型的情况下影响神经元网络同步的趋势,即同步能力。同步分析利用了二阶网络的框架,该框架基于双连接网络基元的相对频率定义了四个二阶连接统计量。分析确定了其中两个统计量,即会聚连接和链式连接,对同步有很大的影响。模拟验证了同步随会聚连接的频率降低而增加,随链式连接的频率增加而增加。这些趋势在不同神经元动力学模型和不同类型网络的模拟中都得到了验证。令人惊讶的是,决定共享输入分数的发散连接并没有强烈影响同步。链式连接而不是发散连接在影响同步方面起着关键作用,这可以用它们增加有效耦合强度来解释。同步随会聚连接的减少主要是由于由此产生的放电率异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5678/3134837/f3cbf7f49356/fncom-05-00028-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验