Suppr超能文献

描述生物制造过程中协同热和光交联对明胶甲基丙烯酰(GelMA)水凝胶结构和功能性质的影响。

Characterizing the Effects of Synergistic Thermal and Photo-Cross-Linking during Biofabrication on the Structural and Functional Properties of Gelatin Methacryloyl (GelMA) Hydrogels.

机构信息

Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.

Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27606, United States.

出版信息

ACS Biomater Sci Eng. 2021 Nov 8;7(11):5175-5188. doi: 10.1021/acsbiomaterials.1c00635. Epub 2021 Oct 1.

Abstract

Gelatin methacryloyl (GelMA) hydrogels have emerged as promising and versatile biomaterial matrices with applications spanning drug delivery, disease modeling, and tissue engineering and regenerative medicine. GelMA exhibits reversible thermal cross-linking at temperatures below 37 °C due to the entanglement of constitutive polymeric chains, and subsequent ultraviolet (UV) photo-cross-linking can covalently bind neighboring chains to create irreversibly cross-linked hydrogels. However, how these cross-linking modalities interact and can be modulated during biofabrication to control the structural and functional characteristics of this versatile biomaterial is not well explored yet. Accordingly, this work characterizes the effects of synergistic thermal and photo-cross-linking as a function of GelMA solution temperature and UV photo-cross-linking duration during biofabrication on the hydrogels' stiffness, microstructure, proteolytic degradation, and responses of NIH 3T3 and human adipose-derived stem cells (hASC). Smaller pore size, lower degradation rate, and increased stiffness are reported in hydrogels processed at lower temperature or prolonged UV exposure. In hydrogels with low stiffness, the cells were found to shear the matrix and cluster into microspheroids, while poor cell attachment was noted in high stiffness hydrogels. In hydrogels with moderate stiffness, ones processed at lower temperature demonstrated better shape fidelity and cell proliferation over time. Analysis of gene expression of hASC encapsulated within the hydrogels showed that, while the GelMA matrix assisted in maintenance of stem cell phenotype (CD44), a higher matrix stiffness resulted in higher pro-inflammatory marker (ICAM1) and markers for cell-matrix interaction (ITGA1 and ITGA10). Analysis of constructs with ultrasonically patterned hASC showed that hydrogels processed at higher temperature possessed lower structural fidelity but resulted in more cell elongation and greater anisotropy over time. These findings demonstrate the significant impact of GelMA material formulation and processing conditions on the structural and functional properties of the hydrogels. The understanding of these material-process-structure-function interactions is critical toward optimizing the functional properties of GelMA hydrogels for different targeted applications.

摘要

明胶甲基丙烯酰(GelMA)水凝胶作为一种有前途的多功能生物材料基质,已被广泛应用于药物输送、疾病建模以及组织工程和再生医学领域。GelMA 由于组成聚合物链的缠结,在低于 37°C 的温度下表现出可逆的热交联,随后的紫外线(UV)光交联可以使相邻链共价结合,从而产生不可逆交联的水凝胶。然而,这些交联方式如何在生物制造过程中相互作用并进行调节,以控制这种多功能生物材料的结构和功能特性,目前还没有得到很好的探索。因此,本工作研究了协同热和光交联在生物制造过程中作为 GelMA 溶液温度和 UV 光交联持续时间的函数对水凝胶硬度、微观结构、蛋白水解降解以及 NIH 3T3 和人脂肪来源干细胞(hASC)响应的影响。结果表明,在较低温度或延长 UV 暴露下处理的水凝胶具有较小的孔径、较低的降解速率和较高的硬度。在硬度较低的水凝胶中,细胞被发现会剪切基质并聚集形成微球,而在硬度较高的水凝胶中则观察到细胞黏附不良。在硬度适中的水凝胶中,在较低温度下处理的水凝胶具有更好的形状保真度和随时间的细胞增殖。对包埋在水凝胶中的 hASC 的基因表达分析表明,尽管 GelMA 基质有助于维持干细胞表型(CD44),但较高的基质硬度会导致更高的促炎标志物(ICAM1)和细胞-基质相互作用标志物(ITGA1 和 ITGA10)。对超声图案化 hASC 的构建体的分析表明,在较高温度下处理的水凝胶具有较低的结构保真度,但随时间的推移会导致细胞伸长和各向异性增加。这些发现表明 GelMA 材料配方和处理条件对水凝胶的结构和功能特性有重大影响。了解这些材料-工艺-结构-功能的相互作用对于优化 GelMA 水凝胶在不同靶向应用中的功能特性至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验