Suppr超能文献

长序列 RNA 二级结构(包括假结)的预测。

Prediction of RNA secondary structure including pseudoknots for long sequences.

机构信息

Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.

出版信息

Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab395.

Abstract

RNA structural elements called pseudoknots are involved in various biological phenomena including ribosomal frameshifts. Because it is infeasible to construct an efficiently computable secondary structure model including pseudoknots, secondary structure prediction methods considering pseudoknots are not yet widely available. We developed IPknot, which uses heuristics to speed up computations, but it has remained difficult to apply it to long sequences, such as messenger RNA and viral RNA, because it requires cubic computational time with respect to sequence length and has threshold parameters that need to be manually adjusted. Here, we propose an improvement of IPknot that enables calculation in linear time by employing the LinearPartition model and automatically selects the optimal threshold parameters based on the pseudo-expected accuracy. In addition, IPknot showed favorable prediction accuracy across a wide range of conditions in our exhaustive benchmarking, not only for single sequences but also for multiple alignments.

摘要

RNA 结构元件,称为假结,参与包括核糖体移码在内的各种生物学现象。由于构建包括假结在内的高效可计算二级结构模型是不可行的,因此考虑假结的二级结构预测方法尚未广泛应用。我们开发了 IPknot,它使用启发式算法来加速计算,但由于它的计算时间与序列长度的立方成正比,并且需要手动调整阈值参数,因此仍然难以应用于长序列,如信使 RNA 和病毒 RNA。在这里,我们提出了 IPknot 的改进,通过使用 LinearPartition 模型,使计算能够在线性时间内进行,并根据伪预期精度自动选择最佳的阈值参数。此外,IPknot 在我们的全面基准测试中,不仅对单个序列,而且对多个比对,在广泛的条件下都表现出了良好的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e65/8769711/d5eb624c6001/bbab395f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验