Suppr超能文献

将真核生物核糖体生物发生因子追溯到古菌域有助于揭示功能复杂性的进化。

Tracing Eukaryotic Ribosome Biogenesis Factors Into the Archaeal Domain Sheds Light on the Evolution of Functional Complexity.

作者信息

Birikmen Mehmet, Bohnsack Katherine E, Tran Vinh, Somayaji Sharvari, Bohnsack Markus T, Ebersberger Ingo

机构信息

Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany.

Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.

出版信息

Front Microbiol. 2021 Sep 16;12:739000. doi: 10.3389/fmicb.2021.739000. eCollection 2021.

Abstract

Ribosome assembly is an essential and carefully choreographed cellular process. In eukaryotes, several 100 proteins, distributed across the nucleolus, nucleus, and cytoplasm, co-ordinate the step-wise assembly of four ribosomal RNAs (rRNAs) and approximately 80 ribosomal proteins (RPs) into the mature ribosomal subunits. Due to the inherent complexity of the assembly process, functional studies identifying ribosome biogenesis factors and, more importantly, their precise functions and interplay are confined to a few and very well-established model organisms. Although best characterized in yeast (), emerging links to disease and the discovery of additional layers of regulation have recently encouraged deeper analysis of the pathway in human cells. In archaea, ribosome biogenesis is less well-understood. However, their simpler sub-cellular structure should allow a less elaborated assembly procedure, potentially providing insights into the functional essentials of ribosome biogenesis that evolved long before the diversification of archaea and eukaryotes. Here, we use a comprehensive phylogenetic profiling setup, integrating targeted ortholog searches with automated scoring of protein domain architecture similarities and an assessment of when search sensitivity becomes limiting, to trace 301 curated eukaryotic ribosome biogenesis factors across 982 taxa spanning the tree of life and including 727 archaea. We show that both factor loss and lineage-specific modifications of factor function modulate ribosome biogenesis, and we highlight that limited sensitivity of the ortholog search can confound evolutionary conclusions. Projecting into the archaeal domain, we find that only few factors are consistently present across the analyzed taxa, and lineage-specific loss is common. While members of the Asgard group are not special with respect to their inventory of ribosome biogenesis factors (RBFs), they unite the highest number of orthologs to eukaryotic RBFs in one taxon. Using large ribosomal subunit maturation as an example, we demonstrate that archaea pursue a simplified version of the corresponding steps in eukaryotes. Much of the complexity of this process evolved on the eukaryotic lineage by the duplication of ribosomal proteins and their subsequent functional diversification into ribosome biogenesis factors. This highlights that studying ribosome biogenesis in archaea provides fundamental information also for understanding the process in eukaryotes.

摘要

核糖体组装是一个必不可少且精心编排的细胞过程。在真核生物中,分布在核仁、细胞核和细胞质中的数百种蛋白质协同作用,将四种核糖体RNA(rRNA)和大约80种核糖体蛋白(RP)逐步组装成成熟的核糖体亚基。由于组装过程固有的复杂性,确定核糖体生物发生因子以及更重要的是它们的精确功能和相互作用的功能研究仅限于少数几个成熟的模式生物。尽管在酵母中研究得最为透彻,但最近与疾病的新联系以及新调控层的发现促使人们对人类细胞中的这一途径进行更深入的分析。在古细菌中,核糖体生物发生的了解较少。然而,它们更简单的亚细胞结构应该允许采用不太复杂的组装程序,这可能为深入了解早在古细菌和真核生物分化之前就已演化出的核糖体生物发生的功能要点提供线索。在这里,我们使用一种全面的系统发育谱分析方法,将靶向直系同源物搜索与蛋白质结构域架构相似性的自动评分以及对搜索灵敏度何时变得有限的评估相结合,在涵盖生命之树的982个分类单元(包括727个古细菌)中追踪301个经过整理的真核生物核糖体生物发生因子。我们表明,因子丢失和因子功能的谱系特异性修饰都会调节核糖体生物发生,并且我们强调直系同源物搜索的有限灵敏度可能会混淆进化结论。在古细菌领域进行推断时,我们发现在所分析的分类单元中只有少数因子始终存在,并且谱系特异性丢失很常见。虽然阿斯加德类群成员在核糖体生物发生因子(RBF)的清单方面并无特别之处,但它们在一个分类单元中汇集了与真核生物RBF数量最多的直系同源物。以大亚基成熟为例,我们证明古细菌采用了真核生物中相应步骤的简化版本。这一过程的许多复杂性是在真核生物谱系上通过核糖体蛋白的复制及其随后向核糖体生物发生因子的功能多样化演化而来的。这突出表明,研究古细菌中的核糖体生物发生也为理解真核生物中的这一过程提供了基础信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d74b/8481954/f5854a751454/fmicb-12-739000-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验