Suppr超能文献

基于实时机器学习的重症监护病房警报分类,无需预先了解潜在节律。

Real-time machine learning-based intensive care unit alarm classification without prior knowledge of the underlying rhythm.

作者信息

Au-Yeung Wan-Tai M, Sevakula Rahul K, Sahani Ashish K, Kassab Mohamad, Boyer Richard, Isselbacher Eric M, Armoundas Antonis A

机构信息

Cardiovascular Research Center, Massachusetts General Hospital, 149 13th St, Charlestown, MA 02129, USA.

Center for Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 14001, India.

出版信息

Eur Heart J Digit Health. 2021 Jul 1;2(3):437-445. doi: 10.1093/ehjdh/ztab058. eCollection 2021 Sep.

Abstract

AIMS

This work attempts to develop a standalone heart rhythm alerting system for the intensive care unit (ICU), where life-threatening arrhythmias have to be identified/alerted more precisely and more instantaneously (i.e. with lower latency) than existing bedside monitors.

METHODS AND RESULTS

We use the dataset from the PhysioNet 2015 Challenge, which contains records that led to true and false arrhythmic alarms in the ICU. These records have been re-annotated as one of eight classes, namely (i) asystole, (ii) extreme bradycardia, (iii) extreme tachycardia, (iv) ventricular fibrillation (VF), (v) ventricular tachycardia (VT), (vi) normal sinus rhythm, (vii) sinus tachycardia, and (viii) noise/artefacts. Arrhythmia-specific features and features that measure the signal quality were extracted from all the records. To improve VF detection, an improved, over an existing, single-lead R-wave detection was developed that takes into account the R-waves detected in all electrocardiographic (ECG) leads. To avoid false R-wave detection due to pacing spikes, ECG signals were filtered with a low pass filter prior to R-wave detection, while the raw signals were used for feature extraction. Random forest was used as the classifier, and 10-time five-fold cross-validation, resulted in a macro-average sensitivity of 81.54%.

CONCLUSIONS

In conclusion, comparing with the bedside monitors used in the PhysioNet 2015 competition, we find that our method achieves higher positive predictive values for asystole, extreme bradycardia, VT, and VF; furthermore, our method is able to alert the presence of arrhythmia instantaneously, i.e. up to 4 s earlier.

摘要

目的

本研究旨在开发一种独立的重症监护病房(ICU)心律警报系统,该系统必须比现有的床边监护仪更精确、更即时(即更低延迟)地识别/警报危及生命的心律失常。

方法与结果

我们使用了PhysioNet 2015挑战赛的数据集,其中包含在ICU中导致真、假心律失常警报的记录。这些记录已被重新标注为八个类别之一,即(i)心搏停止,(ii)极度心动过缓,(iii)极度心动过速,(iv)心室颤动(VF),(v)室性心动过速(VT),(vi)正常窦性心律,(vii)窦性心动过速,以及(viii)噪声/伪迹。从所有记录中提取了心律失常特异性特征和测量信号质量的特征。为了改善VF检测,开发了一种改进的单导联R波检测方法(相对于现有方法),该方法考虑了所有心电图(ECG)导联中检测到的R波。为避免因起搏尖峰导致的错误R波检测,在R波检测之前用低通滤波器对ECG信号进行滤波,而原始信号用于特征提取。使用随机森林作为分类器,经过10次五折交叉验证,得到的宏平均灵敏度为81.54%。

结论

总之,与PhysioNet 2015竞赛中使用的床边监护仪相比,我们发现我们的方法在检测心搏停止、极度心动过缓、VT和VF方面具有更高的阳性预测值;此外,我们的方法能够即时警报心律失常的存在,即提前多达4秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d682/9708015/0441267ede06/ztab058f4.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验