Suppr超能文献

利用深度学习从电子健康记录中开发不良事件预测的连续风险模型。

Use of deep learning to develop continuous-risk models for adverse event prediction from electronic health records.

机构信息

DeepMind, London, UK.

Google Health, London, UK.

出版信息

Nat Protoc. 2021 Jun;16(6):2765-2787. doi: 10.1038/s41596-021-00513-5. Epub 2021 May 5.

Abstract

Early prediction of patient outcomes is important for targeting preventive care. This protocol describes a practical workflow for developing deep-learning risk models that can predict various clinical and operational outcomes from structured electronic health record (EHR) data. The protocol comprises five main stages: formal problem definition, data pre-processing, architecture selection, calibration and uncertainty, and generalizability evaluation. We have applied the workflow to four endpoints (acute kidney injury, mortality, length of stay and 30-day hospital readmission). The workflow can enable continuous (e.g., triggered every 6 h) and static (e.g., triggered at 24 h after admission) predictions. We also provide an open-source codebase that illustrates some key principles in EHR modeling. This protocol can be used by interdisciplinary teams with programming and clinical expertise to build deep-learning prediction models with alternate data sources and prediction tasks.

摘要

早期预测患者结局对于有针对性地进行预防保健非常重要。本方案描述了一种实用的工作流程,用于开发深度学习风险模型,可根据结构化电子健康记录 (EHR) 数据预测各种临床和运营结局。该方案包括五个主要阶段:正式问题定义、数据预处理、架构选择、校准和不确定性以及泛化能力评估。我们已将该工作流程应用于四个结局(急性肾损伤、死亡率、住院时间和 30 天内医院再入院)。该工作流程可实现连续(例如,每 6 h 触发一次)和静态(例如,入院后 24 h 触发)预测。我们还提供了一个开源代码库,其中说明了 EHR 建模中的一些关键原则。具有编程和临床专业知识的跨学科团队可以使用该方案,使用替代数据源和预测任务构建深度学习预测模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验