Suppr超能文献

从 2020 年 3 月至 7 月,加拿大需要较长时间来检测不断变化的 COVID-19 措施的影响。

Long time frames to detect the impact of changing COVID-19 measures, Canada, March to July 2020.

机构信息

Department of Mathematics, Simon Fraser University, Burnaby BC, Canada.

Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby BC, Canada.

出版信息

Euro Surveill. 2021 Oct;26(40). doi: 10.2807/1560-7917.ES.2021.26.40.2001204.

Abstract

BackgroundMany countries have implemented population-wide interventions to control COVID-19, with varying extent and success. Many jurisdictions have moved to relax measures, while others have intensified efforts to reduce transmission.AimWe aimed to determine the time frame between a population-level change in COVID-19 measures and its impact on the number of cases.MethodsWe examined how long it takes for there to be a substantial difference between the number of cases that occur following a change in COVID-19 physical distancing measures and those that would have occurred at baseline. We then examined how long it takes to observe this difference, given delays and noise in reported cases. We used a susceptible-exposed-infectious-removed (SEIR)-type model and publicly available data from British Columbia, Canada, collected between March and July 2020.ResultsIt takes 10 days or more before we expect a substantial difference in the number of cases following a change in COVID-19 control measures, but 20-26 days to detect the impact of the change in reported data. The time frames are longer for smaller changes in control measures and are impacted by testing and reporting processes, with delays reaching ≥ 30 days.ConclusionThe time until a change in control measures has an observed impact is longer than the mean incubation period of COVID-19 and the commonly used 14-day time period. Policymakers and practitioners should consider this when assessing the impact of policy changes. Rapid, consistent and real-time COVID-19 surveillance is important to minimise these time frames.

摘要

背景

许多国家已经实施了全民干预措施来控制 COVID-19,其范围和效果各不相同。许多司法管辖区已经开始放宽措施,而其他地区则加强了努力以减少传播。

目的

我们旨在确定 COVID-19 措施在人群层面上的变化及其对病例数量的影响之间的时间框架。

方法

我们研究了在 COVID-19 物理距离措施发生变化后,出现大量病例与基线时相比需要多长时间才能产生实质性差异。然后,我们研究了在报告病例中存在延迟和噪音的情况下,观察到这种差异需要多长时间。我们使用了易感-暴露-感染-清除(SEIR)型模型和加拿大不列颠哥伦比亚省 2020 年 3 月至 7 月期间收集的公开可用数据。

结果

在 COVID-19 控制措施发生变化后,我们预计病例数量会出现实质性差异需要 10 天或更长时间,但要观察到报告数据变化的影响则需要 20-26 天。控制措施的较小变化会导致时间框架延长,并且会受到测试和报告流程的影响,延迟时间达到≥30 天。

结论

直到控制措施发生变化对观察到的影响需要的时间比 COVID-19 的平均潜伏期和常用的 14 天时间长。政策制定者和从业者在评估政策变化的影响时应考虑这一点。快速、一致和实时的 COVID-19 监测对于缩小这些时间框架非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0847/8511756/1e1a7a959a74/2001204-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验