Suppr超能文献

睡眠回放揭示了熟练行为的前运动回路结构。

Sleep replay reveals premotor circuit structure for a skilled behavior.

机构信息

NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.

NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.

出版信息

Neuron. 2021 Dec 1;109(23):3851-3861.e4. doi: 10.1016/j.neuron.2021.09.021. Epub 2021 Oct 8.

Abstract

Neural circuits often exhibit sequences of activity, but the contribution of local networks to their generation remains unclear. In the zebra finch, song-related premotor sequences within HVC may result from some combination of local connectivity and long-range thalamic inputs from nucleus uvaeformis (Uva). Because lesions to either structure abolish song, we examine "sleep replay" using high-density recording methods to reconstruct precise song-related events. Replay activity persists after the upstream nucleus interfacialis of the nidopallium is lesioned and slows when HVC is cooled, demonstrating that HVC provides temporal structure for these events. To further gauge the importance of intra-HVC connectivity for shaping network dynamics, we lesion Uva during sleep and find that residual replay sequences could span syllable boundaries, supporting a model in which HVC can propagate sequences throughout the duration of the song. Our results highlight the power of studying offline activity to investigate behaviorally relevant circuit organization.

摘要

神经回路通常表现出活动序列,但局部网络对其产生的贡献仍不清楚。在斑马雀中,HVC 中的与歌唱相关的前运动序列可能是由局部连接和来自卵形核(Uva)的长程丘脑输入的某种组合产生的。由于对这两个结构的损伤都会导致鸣唱的丧失,因此我们使用高密度记录方法检查“睡眠回放”,以重建精确的与歌唱相关的事件。在损毁隔核的上游核区后,回放活动仍然存在,而当 HVC 被冷却时,回放活动会减慢,这表明 HVC 为这些事件提供了时间结构。为了进一步评估 HVC 内连接对塑造网络动力学的重要性,我们在睡眠期间损伤 Uva,并发现残留的回放序列可以跨越音节边界,支持 HVC 可以在整个鸣唱期间传播序列的模型。我们的研究结果强调了研究离线活动以研究与行为相关的电路组织的重要性。

相似文献

1
Sleep replay reveals premotor circuit structure for a skilled behavior.
Neuron. 2021 Dec 1;109(23):3851-3861.e4. doi: 10.1016/j.neuron.2021.09.021. Epub 2021 Oct 8.
2
Temperature Manipulation in Songbird Brain Implicates the Premotor Nucleus HVC in Birdsong Syntax.
J Neurosci. 2017 Mar 8;37(10):2600-2611. doi: 10.1523/JNEUROSCI.1827-16.2017. Epub 2017 Feb 3.
3
Rhythmic syllable-related activity in a songbird motor thalamic nucleus necessary for learned vocalizations.
PLoS One. 2017 Jun 15;12(6):e0169568. doi: 10.1371/journal.pone.0169568. eCollection 2017.
4
Uncoordinated sleep replay across hemispheres in the zebra finch.
Curr Biol. 2023 Nov 6;33(21):4704-4712.e3. doi: 10.1016/j.cub.2023.09.005. Epub 2023 Sep 26.
5
Independent premotor encoding of the sequence and structure of birdsong in avian cortex.
J Neurosci. 2014 Dec 10;34(50):16821-34. doi: 10.1523/JNEUROSCI.1940-14.2014.
6
Interhemispheric dominance switching in a neural network model for birdsong.
J Neurophysiol. 2018 Sep 1;120(3):1186-1197. doi: 10.1152/jn.00153.2018. Epub 2018 Jun 20.
7
A distributed neural network model for the distinct roles of medial and lateral HVC in zebra finch song production.
J Neurophysiol. 2017 Aug 1;118(2):677-692. doi: 10.1152/jn.00917.2016. Epub 2017 Apr 5.
8
Thalamus drives vocal onsets in the zebra finch courtship song.
Nature. 2023 Apr;616(7955):132-136. doi: 10.1038/s41586-023-05818-x. Epub 2023 Mar 22.
10
Pre-Bout Neural Activity Changes in Premotor Nucleus HVC Correlate with Successful Initiation of Learned Song Sequence.
J Neurosci. 2018 Jun 27;38(26):5925-5938. doi: 10.1523/JNEUROSCI.3003-17.2018. Epub 2018 May 31.

引用本文的文献

1
Holistic Motor Control of Zebra Finch Song Syllable Sequences.
bioRxiv. 2025 May 5:2025.05.04.652139. doi: 10.1101/2025.05.04.652139.
2
Convergent vocal representations in parrot and human forebrain motor networks.
Nature. 2025 Apr;640(8058):427-434. doi: 10.1038/s41586-025-08695-8. Epub 2025 Mar 19.
3
Exploring Anatomical Links Between the Crow's Nidopallium Caudolaterale and Its Song System.
J Comp Neurol. 2025 Feb;533(2):e70028. doi: 10.1002/cne.70028.
4
Differential behavioral engagement of inhibitory interneuron subtypes in the zebra finch brain.
Neuron. 2025 Feb 5;113(3):460-470.e7. doi: 10.1016/j.neuron.2024.11.003. Epub 2024 Dec 6.
5
Model of the HVC neural network as a song motor in zebra finch.
Front Comput Neurosci. 2024 Nov 20;18:1417558. doi: 10.3389/fncom.2024.1417558. eCollection 2024.
6
Song-like activation of syringeal and respiratory muscles during sleep in canaries.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2025 Mar;211(2):135-148. doi: 10.1007/s00359-024-01720-7. Epub 2024 Oct 15.
7
Temporal scaling of motor cortical dynamics reveals hierarchical control of vocal production.
Nat Neurosci. 2024 Mar;27(3):527-535. doi: 10.1038/s41593-023-01556-5. Epub 2024 Jan 30.
8
Uncoordinated sleep replay across hemispheres in the zebra finch.
Curr Biol. 2023 Nov 6;33(21):4704-4712.e3. doi: 10.1016/j.cub.2023.09.005. Epub 2023 Sep 26.
9
Resilience of A Learned Motor Behavior After Chronic Disruption of Inhibitory Circuits.
bioRxiv. 2024 Aug 24:2023.05.17.541057. doi: 10.1101/2023.05.17.541057.
10
Robust encoding of natural stimuli by neuronal response sequences in monkey visual cortex.
Nat Commun. 2023 May 25;14(1):3021. doi: 10.1038/s41467-023-38587-2.

本文引用的文献

1
Using focal cooling to link neural dynamics and behavior.
Neuron. 2021 Aug 18;109(16):2508-2518. doi: 10.1016/j.neuron.2021.05.029. Epub 2021 Jun 24.
2
A cerebellar-thalamocortical pathway drives behavioral context-dependent movement initiation.
Neuron. 2021 Jul 21;109(14):2326-2338.e8. doi: 10.1016/j.neuron.2021.05.016. Epub 2021 Jun 18.
3
Local Axonal Conduction Shapes the Spatiotemporal Properties of Neural Sequences.
Cell. 2020 Oct 15;183(2):537-548.e12. doi: 10.1016/j.cell.2020.09.019.
4
An avian cortical circuit for chunking tutor song syllables into simple vocal-motor units.
Nat Commun. 2020 Oct 6;11(1):5029. doi: 10.1038/s41467-020-18732-x.
5
Hidden neural states underlie canary song syntax.
Nature. 2020 Jun;582(7813):539-544. doi: 10.1038/s41586-020-2397-3. Epub 2020 Jun 17.
6
Cortical pattern generation during dexterous movement is input-driven.
Nature. 2020 Jan;577(7790):386-391. doi: 10.1038/s41586-019-1869-9. Epub 2019 Dec 25.
7
Open source silicon microprobes for high throughput neural recording.
J Neural Eng. 2020 Jan 24;17(1):016036. doi: 10.1088/1741-2552/ab581a.
8
Inception of memories that guide vocal learning in the songbird.
Science. 2019 Oct 4;366(6461):83-89. doi: 10.1126/science.aaw4226.
9
Correlation structure of grid cells is preserved during sleep.
Nat Neurosci. 2019 Apr;22(4):598-608. doi: 10.1038/s41593-019-0360-0. Epub 2019 Mar 25.
10
Grid cell co-activity patterns during sleep reflect spatial overlap of grid fields during active behaviors.
Nat Neurosci. 2019 Apr;22(4):609-617. doi: 10.1038/s41593-019-0359-6. Epub 2019 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验