Suppr超能文献

人工智能应用于支持医疗决策的自动分析超声心动图图像:系统评价。

Artificial intelligence applied to support medical decisions for the automatic analysis of echocardiogram images: A systematic review.

机构信息

Federal Institute of Tocantins, Av. Bernado Sayão, S/N, Santa Maria, Colinas do Tocantins, TO, Brazil; Federal University of Goias, Alameda Palmeiras, Quadra D, Câmpus Samambaia, Goiânia, GO, Brazil.

Diagnostic Imaging Center - CDI, Av. Portugal, 1155, St. Marista, Goiânia, GO, Brazil.

出版信息

Artif Intell Med. 2021 Oct;120:102165. doi: 10.1016/j.artmed.2021.102165. Epub 2021 Sep 9.

Abstract

The echocardiogram is a test that is widely used in Heart Disease Diagnoses. However, its analysis is largely dependent on the physician's experience. In this regard, artificial intelligence has become an essential technology to assist physicians. This study is a Systematic Literature Review (SLR) of primary state-of-the-art studies that used Artificial Intelligence (AI) techniques to automate echocardiogram analyses. Searches on the leading scientific article indexing platforms using a search string returned approximately 1400 articles. After applying the inclusion and exclusion criteria, 118 articles were selected to compose the detailed SLR. This SLR presents a thorough investigation of AI applied to support medical decisions for the main types of echocardiogram (Transthoracic, Transesophageal, Doppler, Stress, and Fetal). The article's data extraction indicated that the primary research interest of the studies comprised four groups: 1) Improvement of image quality; 2) identification of the cardiac window vision plane; 3) quantification and analysis of cardiac functions, and; 4) detection and classification of cardiac diseases. The articles were categorized and grouped to show the main contributions of the literature to each type of ECHO. The results indicate that the Deep Learning (DL) methods presented the best results for the detection and segmentation of the heart walls, right and left atrium and ventricles, and classification of heart diseases using images/videos obtained by echocardiography. The models that used Convolutional Neural Network (CNN) and its variations showed the best results for all groups. The evidence produced by the results presented in the tabulation of the studies indicates that the DL contributed significantly to advances in echocardiogram automated analysis processes. Although several solutions were presented regarding the automated analysis of ECHO, this area of research still has great potential for further studies to improve the accuracy of results already known in the literature.

摘要

超声心动图是一种广泛应用于心脏病诊断的检查方法。然而,其分析在很大程度上依赖于医生的经验。在这方面,人工智能已成为辅助医生的重要技术。本研究是对使用人工智能(AI)技术自动分析超声心动图的主要最新研究的系统文献综述(SLR)。使用搜索字符串在领先的科学文章索引平台上进行搜索,返回了大约 1400 篇文章。在应用纳入和排除标准后,选择了 118 篇文章进行详细的 SLR。本 SLR 对 AI 应用于支持主要类型超声心动图(经胸、经食管、多普勒、应激和胎儿)的医学决策进行了彻底调查。文章的数据提取表明,研究的主要研究兴趣包括四个组:1)改善图像质量;2)识别心脏窗口视平面;3)量化和分析心脏功能;4)检测和分类心脏疾病。将文章进行分类和分组,以显示文献对每种类型的 ECHO 的主要贡献。结果表明,深度学习(DL)方法在使用超声心动图获得的图像/视频检测和分割心脏壁、左右心房和心室以及分类心脏疾病方面表现出最佳结果。使用卷积神经网络(CNN)及其变体的模型在所有组中均表现出最佳结果。研究结果表中列出的证据表明,DL 为超声心动图自动分析过程的进步做出了重大贡献。尽管已经提出了几种关于 ECHO 自动分析的解决方案,但该研究领域仍有很大的潜力进一步研究,以提高文献中已知结果的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验