Lin Zhichao, Zhang Wenqi, Cai Qingbin, Xu Xiangning, Dong Hongye, Mu Cheng, Zhang Jian-Ping
Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China.
Adv Sci (Weinh). 2021 Nov;8(22):e2102845. doi: 10.1002/advs.202102845. Epub 2021 Oct 11.
The electron transport layer (ETL) is a key component of regular perovskite solar cells to promote the overall charge extraction efficiency and tune the crystallinity of the perovskite layer for better device performance. The authors present a novel protocol of ETL engineering by incorporating a composition of the perovskite precursor, methylammonium chloride (MACl), or formamidine chloride (FACl), into SnO layers, which are then converted into the crystal nuclei of perovskites by reaction with PbI . The SnO -embedded nuclei remarkably improve the morphology and crystallinity of the optically active perovskite layers. The improved ETL-to-perovskite electrical contact and dense packing of large-grained perovskites enhance the carrier mobility and suppress charge recombination. The power conversion efficiency increases from 20.12% (blank device) to 21.87% (21.72%) for devices with MACl (FACl) as an ETL dopant. Moreover, all the precursor-engineered cells exhibit a record-high fill factor (82%).
电子传输层(ETL)是常规钙钛矿太阳能电池的关键组件,用于提高整体电荷提取效率,并调整钙钛矿层的结晶度以实现更好的器件性能。作者提出了一种新颖的ETL工程方案,即将钙钛矿前驱体、甲基氯化铵(MACl)或甲脒氯化物(FACl)的组合物掺入SnO层中,然后通过与PbI反应将其转化为钙钛矿的晶核。嵌入SnO的晶核显著改善了光学活性钙钛矿层的形态和结晶度。改善的ETL与钙钛矿之间的电接触以及大晶粒钙钛矿的致密堆积提高了载流子迁移率并抑制了电荷复合。对于以MACl(FACl)作为ETL掺杂剂的器件,功率转换效率从20.12%(空白器件)提高到21.87%(21.72%)。此外,所有采用前驱体工程的电池均表现出创纪录的高填充因子(82%)。