Suppr超能文献

l-2-卤代酸脱卤酶在 HAD 样水解酶超家族中的脱氟能力与活性位点紧凑性相关。

Defluorination Capability of l-2-Haloacid Dehalogenases in the HAD-Like Hydrolase Superfamily Correlates with Active Site Compactness.

机构信息

Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.

Present address: Zymeworks, Inc., 1385 West 8th Avenue Suite 540, Vancouver, British Columbia, V6H 3 V9, Canada.

出版信息

Chembiochem. 2022 Jan 5;23(1):e202100414. doi: 10.1002/cbic.202100414. Epub 2021 Oct 22.

Abstract

l-2-Haloacid dehalogenases, industrially and environmentally important enzymes that catalyse cleavage of the carbon-halogen bond in S-2-halocarboxylic acids, were known to hydrolyse chlorinated, brominated and iodinated substrates but no activity towards fluorinated compounds had been reported. A screen for novel dehalogenase activities revealed four l-2-haloacid dehalogenases capable of defluorination. We now report crystal structures for two of these enzymes, Bpro0530 and Rha0230, as well as for the related proteins PA0810 and RSc1362, which hydrolyse chloroacetate but not fluoroacetate, all at ∼2.2 Å resolution. Overall structure and active sites of these enzymes are highly similar. In molecular dynamics (MD) calculations, only the defluorinating enzymes sample more compact conformations, which in turn allow more effective interactions with the small fluorine atom. Structural constraints, based on X-ray structures and MD calculations, correctly predict the defluorination activity of the homologous enzyme ST2570.

摘要

l-2-卤酸脱卤酶是一类在工业和环境中具有重要应用价值的酶,能够催化 S-2-卤代羧酸中碳卤键的断裂。这类酶已知能够水解氯化物、溴化物和碘化物底物,但尚未有报道表明其能够作用于含氟化合物。我们通过筛选新型脱卤酶活性,发现了 4 种能够脱氟的 l-2-卤酸脱卤酶。目前我们报道了其中两种酶(Bpro0530 和 Rha0230)以及与其相关的两种蛋白(PA0810 和 RSc1362)的晶体结构,它们在分辨率约为 2.2 Å 的条件下均可水解氯乙酸但不能水解氟乙酸。这些酶的整体结构和活性位点高度相似。在分子动力学(MD)计算中,只有脱氟酶能够模拟出更紧凑的构象,这反过来又能使它们与较小的氟原子进行更有效的相互作用。基于 X 射线结构和 MD 计算的结构约束正确地预测了同源酶 ST2570 的脱氟活性。

相似文献

4
[Recent progress in 2-haloacid dehalogenases].
Sheng Wu Gong Cheng Xue Bao. 2020 May 25;36(5):868-878. doi: 10.13345/j.cjb.190370.
6
Biochemical and structural studies of a L-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii.
Extremophiles. 2009 Jan;13(1):179-90. doi: 10.1007/s00792-008-0208-0. Epub 2008 Nov 29.
7
Sequence- and activity-based screening of microbial genomes for novel dehalogenases.
Microb Biotechnol. 2010 Jan;3(1):107-20. doi: 10.1111/j.1751-7915.2009.00155.x. Epub 2009 Nov 12.
8
Mapping the reaction coordinates of enzymatic defluorination.
J Am Chem Soc. 2011 May 18;133(19):7461-8. doi: 10.1021/ja200277d. Epub 2011 Apr 21.
10
Structure of 2-haloacid dehalogenase from Pseudomonas syringae pv. tomato DC3000.
Acta Crystallogr D Biol Crystallogr. 2013 Jun;69(Pt 6):1108-14. doi: 10.1107/S0907444913006021. Epub 2013 May 15.

引用本文的文献

2
Enzymatic carbon-fluorine bond cleavage by human gut microbes.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2504122122. doi: 10.1073/pnas.2504122122. Epub 2025 Jun 13.
4
Alkane Monooxygenase (FtAlkB) Is an Alkyl Fluoride Dehalogenase.
J Am Chem Soc. 2025 Mar 19;147(11):9085-9090. doi: 10.1021/jacs.5c00386. Epub 2025 Mar 7.
5
Computational Studies of Enzymes for C-F Bond Degradation and Functionalization.
Chemphyschem. 2025 May 5;26(9):e202401130. doi: 10.1002/cphc.202401130. Epub 2025 Mar 6.
6
Phenotypic Plasticity During Organofluorine Degradation Revealed by Adaptive Evolution.
Microb Biotechnol. 2024 Dec;17(12):e70066. doi: 10.1111/1751-7915.70066.
7
A prescription for engineering PFAS biodegradation.
Biochem J. 2024 Dec 4;481(23):1757-1770. doi: 10.1042/BCJ20240283.
9
Evolutionary obstacles and not C-F bond strength make PFAS persistent.
Microb Biotechnol. 2024 Apr;17(4):e14463. doi: 10.1111/1751-7915.14463.
10
Toward the development of a molecular toolkit for the microbial remediation of per-and polyfluoroalkyl substances.
Appl Environ Microbiol. 2024 Apr 17;90(4):e0015724. doi: 10.1128/aem.00157-24. Epub 2024 Mar 13.

本文引用的文献

1
Comprehensive Understanding of Fluoroacetate Dehalogenase-Catalyzed Degradation of Fluorocarboxylic Acids: A QM/MM Approach.
Environ Sci Technol. 2021 Jul 20;55(14):9817-9825. doi: 10.1021/acs.est.0c08811. Epub 2021 Jun 3.
2
Time-resolved crystallography reveals allosteric communication aligned with molecular breathing.
Science. 2019 Sep 13;365(6458):1167-1170. doi: 10.1126/science.aaw9904.
3
Substrate-Based Allosteric Regulation of a Homodimeric Enzyme.
J Am Chem Soc. 2019 Jul 24;141(29):11540-11556. doi: 10.1021/jacs.9b03703. Epub 2019 Jun 26.
4
The role of dimer asymmetry and protomer dynamics in enzyme catalysis.
Science. 2017 Jan 20;355(6322). doi: 10.1126/science.aag2355.
5
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
6
Collaboration gets the most out of software.
Elife. 2013 Sep 10;2:e01456. doi: 10.7554/eLife.01456.
7
Mapping the reaction coordinates of enzymatic defluorination.
J Am Chem Soc. 2011 May 18;133(19):7461-8. doi: 10.1021/ja200277d. Epub 2011 Apr 21.
8
Sequence- and activity-based screening of microbial genomes for novel dehalogenases.
Microb Biotechnol. 2010 Jan;3(1):107-20. doi: 10.1111/j.1751-7915.2009.00155.x. Epub 2009 Nov 12.
9
Enzymes that catalyse SN2 reaction mechanisms.
Nat Prod Rep. 2010 Jun;27(6):900-18. doi: 10.1039/b919371p. Epub 2010 Apr 7.
10
Markers of fitness in a successful enzyme superfamily.
Curr Opin Struct Biol. 2009 Dec;19(6):658-65. doi: 10.1016/j.sbi.2009.09.008. Epub 2009 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验