Suppr超能文献

新型冠状病毒肺炎与结核病合并感染的数学建模与分析

Mathematical modeling and analysis for the co-infection of COVID-19 and tuberculosis.

作者信息

Mekonen Kassahun Getnet, Obsu Legesse Lemecha

机构信息

Department of Mathematics, Hawassa University, Hawassa, Ethiopia.

Department of Applied Mathematics, Adama Science and Technology University, Adama, Ethiopia.

出版信息

Heliyon. 2022 Oct;8(10):e11195. doi: 10.1016/j.heliyon.2022.e11195. Epub 2022 Oct 20.

Abstract

We developed a TB-COVID-19 co-infection epidemic model using a non-linear dynamical system by subdividing the human population into seven compartments. The biological well-posedness of the formulated mathematical model was studied via proving properties like boundedness of solutions, no-negativity, and the solution's dependence on the initial data. We then computed the reproduction numbers separately for TB and COVID-19 sub-models. The criterion for stability conditions for stationary points was examined. The basic reproduction number of sub-models used to suggest the mitigation and persistence of the diseases. Qualitative analysis of the sub-models revealed that the disease-free stationary points are both locally and globally stable provided the respective reproduction numbers are smaller than unit. The endemic stationary points for each sub-models were globally stable if their respective basic reproduction numbers are greater than unit. In each sub-model, we performed an analysis of sensitive parameters concerning the corresponding reproduction numbers. Results from sensitivity indices of the parameters revealed that deceasing contact rate and increasing the transferring rates from the latent stage to an infected class of individuals leads to mitigating the two diseases and their co-infections. We have also studied the analytical behavior of the full co-infection model by deriving the equilibrium points and investigating the conditions of their stability. The numerical experiments of the proposed co-infection model agree with the findings in the analytical results.

摘要

我们通过将人群细分为七个部分,利用非线性动力系统开发了一种结核病-新冠病毒共感染流行模型。通过证明解的有界性、非负性以及解对初始数据的依赖性等性质,研究了所建立数学模型的生物适定性。然后,我们分别计算了结核病和新冠病毒子模型的再生数。研究了平衡点稳定性条件的判据。子模型的基本再生数用于表明疾病的缓解和持续情况。对子模型的定性分析表明,如果各自的再生数小于1,则无病平衡点在局部和全局都是稳定的。如果每个子模型各自的基本再生数大于1,则其流行平衡点是全局稳定的。在每个子模型中,我们对与相应再生数有关的敏感参数进行了分析。参数敏感性指数的结果表明,降低接触率以及提高从潜伏阶段到感染个体类别的转移率会减轻这两种疾病及其共感染情况。我们还通过推导平衡点并研究其稳定性条件,研究了完整共感染模型的分析行为。所提出的共感染模型的数值实验与分析结果中的发现一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/313a/9593191/389ea9e32e3a/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验