Suppr超能文献

UV 抗性基因 8 介导的信号通路在植物登陆过程中的起源与适应性进化。

Origin and adaptive evolution of UV RESISTANCE LOCUS 8-mediated signaling during plant terrestrialization.

机构信息

College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.

National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200032, China.

出版信息

Plant Physiol. 2022 Jan 20;188(1):332-346. doi: 10.1093/plphys/kiab486.

Abstract

UV RESISTANCE LOCUS 8 (UVR8) mediates photomorphogenic responses and acclimation to UV-B radiation by regulating the transcription of a series of transcription factors (TFs). However, the origin and evolution of UVR8-mediated signaling pathways remain largely unknown. In this study, we investigated the origin and evolution of the major components of the UVR8-mediated signaling pathway (UVR8, REPRESSOR OF UV-B PHOTOMORPHOGENESIS [RUP], BRI1-EMS-SUPPRESSOR1 [BES1], BES1-INTERACTING MYC-LIKE 1 (BIM1), WRKY DNA-BINDING PROTEIN 36 (WRKY36), MYB DOMAIN PROTEIN 73/77/13 [MYB73/MYB77/MYB13], and PHYTOCHROME INTERACTING FACTOR 4/5 [PIF4 and PIF5]) using comparative genomics and phylogenetic approaches. We showed that the central regulator UVR8 presented a conservative evolutionary route during plant evolution, and the evolutionary history of downstream negative regulators and TFs was different from that of green plant phylogeny. The canonical UVR8-CONSTITUTIVELY PHOTOMORPHOGENIC 1(COP1)/SUPPRESSOR OF PHYA-105 (SPA)-ELONGATED HYPOCOTYL 5 (HY5)-RUP signaling pathway originated in chlorophytes and conferred green algae the additional ability to cope with UV-B radiation. Moreover, the emergence of multiple UVR8-mediated signaling pathways in charophytes laid the foundations for the cross-talk between UV-B signals and endogenous hormone responses. Importantly, we observed signatures that reflect plant adaptations to high UV-B irradiance in subaerial/terrestrial environments, including positive selection in UVR8 and RUPs and increased copy number of some vital TFs. These results revealed that green plants not only experienced adaptive modifications in the canonical UVR8-COP1/SPA-HY5-RUP signaling pathway, but also diversified their UV-B signal transduction mechanisms through increasing cross-talk with other pathways, such as those associated with brassinosteroids and auxin. This study greatly expands our understanding of molecular evolution and adaptive mechanisms underlying plant UV-B acclimation.

摘要

UV 抵抗基因座 8(UVR8)通过调控一系列转录因子(TFs)的转录,介导光形态建成响应和对 UV-B 辐射的适应。然而,UVR8 介导的信号通路的起源和进化在很大程度上仍然未知。在这项研究中,我们利用比较基因组学和系统发育分析的方法,研究了 UVR8 介导的信号通路的主要成分(UVR8、UV-B 光形态建成抑制物 [RUP]、BRI1-EMS 抑制物 1 [BES1]、BES1 相互作用 MYC 样蛋白 1 [BIM1]、WRKY DNA 结合蛋白 36 [WRKY36]、MYB 结构域蛋白 73/77/13 [MYB73/MYB77/MYB13] 和 PHYTOCHROME INTERACTING FACTOR 4/5 [PIF4 和 PIF5])的起源和进化。我们表明,中心调节因子 UVR8 在植物进化过程中呈现出保守的进化途径,而下游负调节因子和 TFs 的进化历史与绿色植物的系统发育不同。规范的 UVR8-CONSTITUTIVELY PHOTOMORPHOGENIC 1(COP1)/SUPPRESSOR OF PHYA-105(SPA)-ELONGATED HYPOCOTYL 5(HY5)-RUP 信号通路起源于绿藻,并赋予绿藻额外的能力来应对 UV-B 辐射。此外,在轮藻门中出现的多种 UVR8 介导的信号通路为 UV-B 信号与内源性激素反应之间的串扰奠定了基础。重要的是,我们观察到反映植物适应高 UV-B 辐照的特征,包括 UVR8 和 RUPs 的正选择和一些重要 TFs 的拷贝数增加。这些结果表明,绿色植物不仅在规范的 UVR8-COP1/SPA-HY5-RUP 信号通路中经历了适应性修饰,而且还通过增加与其他途径的串扰,如与油菜素内酯和生长素相关的途径,多样化了它们的 UV-B 信号转导机制。这项研究极大地扩展了我们对植物 UV-B 适应的分子进化和适应机制的理解。

相似文献

1
Origin and adaptive evolution of UV RESISTANCE LOCUS 8-mediated signaling during plant terrestrialization.
Plant Physiol. 2022 Jan 20;188(1):332-346. doi: 10.1093/plphys/kiab486.
2
Signal transduction mediated by the plant UV-B photoreceptor UVR8.
New Phytol. 2019 Feb;221(3):1247-1252. doi: 10.1111/nph.15469. Epub 2018 Oct 13.
3
UVR8 Interacts with BES1 and BIM1 to Regulate Transcription and Photomorphogenesis in Arabidopsis.
Dev Cell. 2018 Feb 26;44(4):512-523.e5. doi: 10.1016/j.devcel.2017.12.028. Epub 2018 Feb 1.
5
Coordinated Transcriptional Regulation by the UV-B Photoreceptor and Multiple Transcription Factors for Plant UV-B Responses.
Mol Plant. 2020 May 4;13(5):777-792. doi: 10.1016/j.molp.2020.02.015. Epub 2020 Feb 29.
6
Photoactivated UVR8-COP1 module determines photomorphogenic UV-B signaling output in Arabidopsis.
PLoS Genet. 2014 Mar 20;10(3):e1004218. doi: 10.1371/journal.pgen.1004218. eCollection 2014 Mar.
7
Molecular Mechanisms of UVR8-Mediated Photomorphogenesis Derived from Revaluation of Action Spectra.
Photochem Photobiol. 2021 Sep;97(5):903-910. doi: 10.1111/php.13459. Epub 2021 Jun 21.
8
UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development.
EMBO J. 2020 Jan 15;39(2):e101928. doi: 10.15252/embj.2019101928. Epub 2019 Nov 28.
9
Origin and Evolution of Core Components Responsible for Monitoring Light Environment Changes during Plant Terrestrialization.
Mol Plant. 2019 Jun 3;12(6):847-862. doi: 10.1016/j.molp.2019.04.006. Epub 2019 Apr 19.
10
Photomorphogenic responses to ultraviolet-B light.
Plant Cell Environ. 2017 Nov;40(11):2544-2557. doi: 10.1111/pce.12934. Epub 2017 Mar 30.

引用本文的文献

1
Transcontinental patterns in floral pigment abundance among animal-pollinated species.
Sci Rep. 2025 May 7;15(1):15927. doi: 10.1038/s41598-025-94709-4.
2
Photoreceptor-induced LHL4 protects the photosystem II monomer in .
Proc Natl Acad Sci U S A. 2025 Feb 18;122(7):e2418687122. doi: 10.1073/pnas.2418687122. Epub 2025 Feb 13.
3
Morphological, Physiological, and Molecular Responses to Heat Stress in Brassicaceae.
Plants (Basel). 2025 Jan 7;14(2):152. doi: 10.3390/plants14020152.
4
Identification of the locus controlling leaf rolling and its application in maize breeding.
Mol Breed. 2025 Jan 5;45(1):9. doi: 10.1007/s11032-024-01534-0. eCollection 2025 Jan.
5
Applicability of metabolomics to improve sustainable grapevine production.
Front Mol Biosci. 2024 Sep 6;11:1395677. doi: 10.3389/fmolb.2024.1395677. eCollection 2024.
6
Nuclear accumulation of rice UV-B photoreceptors is UV-B- and OsCOP1-independent for UV-B responses.
Nat Commun. 2024 Jul 30;15(1):6396. doi: 10.1038/s41467-024-50755-6.
7
Photoreceptor-induced sinapate synthesis contributes to photoprotection in Arabidopsis.
Plant Physiol. 2024 Oct 1;196(2):1518-1533. doi: 10.1093/plphys/kiae352.
9
Functional divergence of Arabidopsis REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 and 2 in repression of flowering.
Plant Physiol. 2024 Feb 29;194(3):1563-1576. doi: 10.1093/plphys/kiad606.
10
Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system.
Photochem Photobiol Sci. 2023 May;22(5):1049-1091. doi: 10.1007/s43630-023-00376-7. Epub 2023 Feb 1.

本文引用的文献

2
The origin of SPA reveals the divergence and convergence of light signaling in Archaeplastida.
Mol Phylogenet Evol. 2021 Aug;161:107175. doi: 10.1016/j.ympev.2021.107175. Epub 2021 Apr 20.
3
Perception and Signaling of Ultraviolet-B Radiation in Plants.
Annu Rev Plant Biol. 2021 Jun 17;72:793-822. doi: 10.1146/annurev-arplant-050718-095946. Epub 2021 Feb 26.
4
Polyploidy: A Biological Force From Cells to Ecosystems.
Trends Cell Biol. 2020 Sep;30(9):688-694. doi: 10.1016/j.tcb.2020.06.006. Epub 2020 Jul 6.
5
The C-terminal 17 amino acids of the photoreceptor UVR8 is involved in the fine-tuning of UV-B signaling.
J Integr Plant Biol. 2020 Sep;62(9):1327-1340. doi: 10.1111/jipb.12977. Epub 2020 Jul 17.
6
The Penium margaritaceum Genome: Hallmarks of the Origins of Land Plants.
Cell. 2020 May 28;181(5):1097-1111.e12. doi: 10.1016/j.cell.2020.04.019. Epub 2020 May 21.
7
Insights into the Diversification and Evolution of R2R3-MYB Transcription Factors in Plants.
Plant Physiol. 2020 Jun;183(2):637-655. doi: 10.1104/pp.19.01082. Epub 2020 Apr 14.
8
Transcriptional regulatory network of the light signaling pathways.
New Phytol. 2020 Aug;227(3):683-697. doi: 10.1111/nph.16602. Epub 2020 May 16.
9
A dynamic model of UVR8 photoreceptor signalling in UV-B-acclimated Arabidopsis.
New Phytol. 2020 Aug;227(3):857-866. doi: 10.1111/nph.16581. Epub 2020 May 13.
10
E2 conjugases UBC1 and UBC2 regulate MYB42-mediated SOS pathway in response to salt stress in Arabidopsis.
New Phytol. 2020 Jul;227(2):455-472. doi: 10.1111/nph.16538. Epub 2020 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验