Niazi Muhammad Umar B, Kibangou Alain, Canudas-de-Wit Carlos, Nikitin Denis, Tumash Liudmila, Bliman Pierre-Alexandre
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France.
Sorbonne Université, Université Paris-Diderot SPC, Inria, CNRS, Laboratoire Jacques-Louis Lions, équipe Mamba, 75005 Paris, France.
Annu Rev Control. 2021;52:554-572. doi: 10.1016/j.arcontrol.2021.09.004. Epub 2021 Oct 14.
Testing is a crucial control mechanism in the beginning phase of an epidemic when the vaccines are not yet available. It enables the public health authority to detect and isolate the infected cases from the population, thereby limiting the disease transmission to susceptible people. However, despite the significance of testing in epidemic control, the recent literature on the subject lacks a control-theoretic perspective. In this paper, an epidemic model is proposed that incorporates the testing rate as a control input and differentiates the undetected infected from the detected infected cases, who are assumed to be removed from the disease spreading process in the population. After estimating the model on the data corresponding to the beginning phase of COVID-19 in France, two testing policies are proposed: the so-called best-effort strategy for testing (BEST) and constant optimal strategy for testing (COST). The BEST policy is a suppression strategy that provides a minimum testing rate that stops the growth of the epidemic when implemented. The COST policy, on the other hand, is a mitigation strategy that provides an optimal value of testing rate minimizing the peak value of the infected population when the total stockpile of tests is limited. Both testing policies are evaluated by their impact on the number of active intensive care unit (ICU) cases and the cumulative number of deaths for the COVID-19 case of France.
在尚无疫苗的疫情初期,检测是一种至关重要的控制机制。它使公共卫生当局能够从人群中检测并隔离感染病例,从而限制疾病向易感人群的传播。然而,尽管检测在疫情控制中具有重要意义,但近期关于该主题的文献缺乏控制理论视角。本文提出了一种疫情模型,该模型将检测率作为控制输入,并区分未检测到的感染者和已检测到的感染者,假定已检测到的感染者将从人群中的疾病传播过程中移除。在根据法国新冠疫情初期的数据对模型进行估计后,提出了两种检测策略:所谓的尽力检测策略(BEST)和恒定最优检测策略(COST)。BEST策略是一种抑制策略,实施时提供一个能阻止疫情增长的最低检测率。另一方面,COST策略是一种缓解策略,当检测总量有限时,提供一个使感染人群峰值最小化的检测率最优值。两种检测策略均根据它们对法国新冠病例的活跃重症监护病房(ICU)病例数和累计死亡数的影响进行评估。