Am J Epidemiol. 2022 Jan 24;191(2):349-359. doi: 10.1093/aje/kwab253.
Social epidemiology aims to identify social structural risk factors, thus informing targets and timing of interventions. Ascertaining which interventions will be most effective and when they should be implemented is challenging because social conditions vary across the life course and are subject to time-varying confounding. Marginal structural models (MSMs) may be useful but can present unique challenges when studying social epidemiologic exposures over the life course. We describe selected MSMs corresponding to common theoretical life-course models and identify key issues for consideration related to time-varying confounding and late study enrollment. Using simulated data mimicking a cohort study evaluating the effects of depression in early, mid-, and late life on late-life stroke risk, we examined whether and when specific study characteristics and analytical strategies may induce bias. In the context of time-varying confounding, inverse-probability-weighted estimation of correctly specified MSMs accurately estimated the target causal effects, while conventional regression models showed significant bias. When no measure of early-life depression was available, neither MSMs nor conventional models were unbiased, due to confounding by early-life depression. To inform interventions, researchers need to identify timing of effects and consider whether missing data regarding exposures earlier in life may lead to biased estimates.
社会流行病学旨在确定社会结构风险因素,从而为干预措施的目标和时机提供信息。确定哪些干预措施最有效以及何时实施这些干预措施具有挑战性,因为社会条件在整个生命过程中会发生变化,并且受到时变混杂因素的影响。边缘结构模型(MSM)可能会有所帮助,但在研究整个生命过程中的社会流行病学暴露时,可能会带来独特的挑战。我们描述了与常见理论生命历程模型相对应的选定 MSM,并确定了与时变混杂因素和后期研究入组相关的需要考虑的关键问题。使用模拟数据模拟了一项队列研究,评估了早期、中期和晚期抑郁对晚年中风风险的影响,我们研究了特定的研究特征和分析策略是否以及何时可能会产生偏差。在时变混杂的情况下,正确指定的 MSM 的逆概率加权估计准确地估计了目标因果效应,而传统的回归模型显示出显著的偏差。当没有早期生活中抑郁的测量值时,由于早期生活中抑郁的混杂因素,MSM 和传统模型都没有无偏。为了为干预措施提供信息,研究人员需要确定影响的时间,并考虑关于生命早期暴露的数据缺失是否会导致有偏差的估计。