Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA.
Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA.
Biostatistics. 2022 Oct 14;23(4):1056-1073. doi: 10.1093/biostatistics/kxac027.
Marginal structural models (MSMs), which adopt inverse probability treatment weighting in the estimating equations, are powerful tools to estimate the causal effects of time-varying exposures in the presence of time-dependent confounders. Motivated by the Conservation of Hearing Study (CHEARS) Audiology Assessment Arm (AAA) where repeated hearing measurements were clustered by study participants, time, and testing sites, we propose two methods to account for the multilevel correlation structure when fitting the MSMs. The first method directly models the covariance of the repeated outcomes when solving the weighted generalized estimating equations for MSMs, while the second two-stage analysis approach fits cluster-specific MSMs first and then combines the estimated parameters using mixed-effects meta-analysis. Finite sample simulation results suggest that our methods can obtain less biased and more efficient estimates of the parameters by accounting for the multilevel correlation. Moreover, we explore the effects of using fixed- or mixed-effects model to estimate the treatment probability on the parameter estimates of the MSMs in the presence of unmeasured cluster-level confounders. Lastly, we apply our methods to the CHEARS AAA data set, to estimate the causal effects of aspirin use on hearing loss.
边缘结构模型(MSMs)在估计方程中采用逆概率处理加权,是在存在时变混杂因素的情况下估计时变暴露的因果效应的有力工具。受听力保护研究(CHEARS)听力学评估臂(AAA)的启发,该研究中重复的听力测量按研究参与者、时间和测试地点进行聚类,我们提出了两种方法来处理 MSM 拟合中多水平相关结构。第一种方法在求解 MSM 的加权广义估计方程时直接对重复结果的协方差建模,而第二种两阶段分析方法首先拟合特定于聚类的 MSM,然后使用混合效应荟萃分析结合估计参数。有限样本模拟结果表明,我们的方法可以通过考虑多水平相关性来获得更无偏和更有效的参数估计。此外,我们还探讨了在存在未测量的聚类水平混杂因素的情况下,使用固定效应或混合效应模型来估计处理概率对 MSM 参数估计的影响。最后,我们将我们的方法应用于 CHEARS AAA 数据集,以估计阿司匹林使用对听力损失的因果影响。