Suppr超能文献

多层次聚类数据的边缘结构模型。

Marginal structural models for multilevel clustered data.

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA.

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA.

出版信息

Biostatistics. 2022 Oct 14;23(4):1056-1073. doi: 10.1093/biostatistics/kxac027.

Abstract

Marginal structural models (MSMs), which adopt inverse probability treatment weighting in the estimating equations, are powerful tools to estimate the causal effects of time-varying exposures in the presence of time-dependent confounders. Motivated by the Conservation of Hearing Study (CHEARS) Audiology Assessment Arm (AAA) where repeated hearing measurements were clustered by study participants, time, and testing sites, we propose two methods to account for the multilevel correlation structure when fitting the MSMs. The first method directly models the covariance of the repeated outcomes when solving the weighted generalized estimating equations for MSMs, while the second two-stage analysis approach fits cluster-specific MSMs first and then combines the estimated parameters using mixed-effects meta-analysis. Finite sample simulation results suggest that our methods can obtain less biased and more efficient estimates of the parameters by accounting for the multilevel correlation. Moreover, we explore the effects of using fixed- or mixed-effects model to estimate the treatment probability on the parameter estimates of the MSMs in the presence of unmeasured cluster-level confounders. Lastly, we apply our methods to the CHEARS AAA data set, to estimate the causal effects of aspirin use on hearing loss.

摘要

边缘结构模型(MSMs)在估计方程中采用逆概率处理加权,是在存在时变混杂因素的情况下估计时变暴露的因果效应的有力工具。受听力保护研究(CHEARS)听力学评估臂(AAA)的启发,该研究中重复的听力测量按研究参与者、时间和测试地点进行聚类,我们提出了两种方法来处理 MSM 拟合中多水平相关结构。第一种方法在求解 MSM 的加权广义估计方程时直接对重复结果的协方差建模,而第二种两阶段分析方法首先拟合特定于聚类的 MSM,然后使用混合效应荟萃分析结合估计参数。有限样本模拟结果表明,我们的方法可以通过考虑多水平相关性来获得更无偏和更有效的参数估计。此外,我们还探讨了在存在未测量的聚类水平混杂因素的情况下,使用固定效应或混合效应模型来估计处理概率对 MSM 参数估计的影响。最后,我们将我们的方法应用于 CHEARS AAA 数据集,以估计阿司匹林使用对听力损失的因果影响。

相似文献

1
Marginal structural models for multilevel clustered data.
Biostatistics. 2022 Oct 14;23(4):1056-1073. doi: 10.1093/biostatistics/kxac027.
2
Joint calibrated estimation of inverse probability of treatment and censoring weights for marginal structural models.
Biometrics. 2022 Mar;78(1):115-127. doi: 10.1111/biom.13411. Epub 2020 Dec 11.
3
Understanding Marginal Structural Models for Time-Varying Exposures: Pitfalls and Tips.
J Epidemiol. 2020 Sep 5;30(9):377-389. doi: 10.2188/jea.JE20200226. Epub 2020 Jul 18.
8
Fitting marginal structural models: estimating covariate-treatment associations in the reweighted data set can guide model fitting.
J Clin Epidemiol. 2008 Sep;61(9):875-81. doi: 10.1016/j.jclinepi.2007.10.024. Epub 2008 May 16.
9
An overview of propensity score matching methods for clustered data.
Stat Methods Med Res. 2023 Apr;32(4):641-655. doi: 10.1177/09622802221133556. Epub 2022 Nov 25.

引用本文的文献

本文引用的文献

2
Simulating longitudinal data from marginal structural models using the additive hazard model.
Biom J. 2021 Oct;63(7):1526-1541. doi: 10.1002/bimj.202000040. Epub 2021 May 13.
3
Variance estimation in inverse probability weighted Cox models.
Biometrics. 2021 Sep;77(3):1101-1117. doi: 10.1111/biom.13332. Epub 2020 Aug 3.
4
An extended mixed-effects framework for meta-analysis.
Stat Med. 2019 Dec 20;38(29):5429-5444. doi: 10.1002/sim.8362. Epub 2019 Oct 24.
5
Prospective Study of Dietary Patterns and Hearing Threshold Elevation.
Am J Epidemiol. 2020 Mar 2;189(3):204-214. doi: 10.1093/aje/kwz223.
7
Causal inference and longitudinal data: a case study of religion and mental health.
Soc Psychiatry Psychiatr Epidemiol. 2016 Nov;51(11):1457-1466. doi: 10.1007/s00127-016-1281-9. Epub 2016 Sep 8.
8
A basic introduction to fixed-effect and random-effects models for meta-analysis.
Res Synth Methods. 2010 Apr;1(2):97-111. doi: 10.1002/jrsm.12. Epub 2010 Nov 21.
9
Review of methods for handling confounding by cluster and informative cluster size in clustered data.
Stat Med. 2014 Dec 30;33(30):5371-87. doi: 10.1002/sim.6277. Epub 2014 Aug 4.
10
Propensity score weighting with multilevel data.
Stat Med. 2013 Aug 30;32(19):3373-87. doi: 10.1002/sim.5786. Epub 2013 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验