Suppr超能文献

两种丹麦全国性登记处中用于识别脑出血复发的简单算法的有效性

Validity of Simple Algorithms to Identify Recurrence of Intracerebral Hemorrhage in Two Danish Nationwide Registries.

作者信息

Jensen Mie Micheelsen, Hald Stine Munk, Kristensen Line Marie Buch, Boe Nils Jensen, Harbo Frederik Severin Gråe, Gaist David

机构信息

Department of Neurology, Odense University Hospital, Odense, Denmark.

Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

出版信息

Clin Epidemiol. 2021 Oct 9;13:949-958. doi: 10.2147/CLEP.S333624. eCollection 2021.

Abstract

PURPOSE

Danish registries could be an attractive resource for studies of recurrent intracerebral hemorrhage (re-ICH). We developed and validated algorithms to identify re-ICH in the Danish Stroke Registry (DSR) and the Danish National Patient Registry (DNPR).

PATIENTS AND METHODS

Using multiple sources, we followed-up an inception cohort with verified first-ever spontaneous ICH (n = 2528) for their first re-ICH in 2009-2018 (study period). We used verified cases of re-ICH (n = 124) as the gold standard to assess the performance of register-based algorithms for identifying re-ICH. For each cohort member, we traced events of re-ICH (ICD-10-code I61) in the study period according to DSR and DNPR, respectively. For each registry, we tested algorithms with a blanking period (BP) - ie, a period immediately following the index ICH during which outcome events were ignored - of varying length (7 days-360 days). The algorithm with the shortest BP that returned a positive predictive value (PPV) of ≥80% was considered optimal. We also calculated negative predictive value (NPV), sensitivity, and specificity of each algorithm and [95% confidence intervals] for all proportions.

RESULTS

The optimal algorithm for DSR (BP 30 days) had a PPV of 89.5% [82.2-94.0], NPV 98.8% [98.2-99.1], sensitivity 75.8% [67.6-82.5], and specificity 99.5% [99.2-99.7]. The optimal algorithm for DNPR (BP 120 days) had a PPV of 80.6% [71.7-87.2], NPV 98.1% [97.5-98.6], sensitivity 63.7% [55.0-71.6], and specificity 99.2% [98.8-99.5].

CONCLUSION

Simple algorithms accurately identified re-ICH in DSR and DNPR. Compared with DNPR, DSR achieved higher PPV and sensitivity with a shorter BP. The proposed algorithms could facilitate valid use of DSR and DNPR for studies of re-ICH.

摘要

目的

丹麦的登记系统可能是研究复发性脑出血(re-ICH)的一个有吸引力的资源。我们开发并验证了用于在丹麦卒中登记系统(DSR)和丹麦国家患者登记系统(DNPR)中识别复发性脑出血的算法。

患者与方法

我们利用多个来源,对一个起始队列中2009年至2018年(研究期)首次经证实的自发性脑出血患者(n = 2528)进行随访,以观察其首次复发性脑出血情况。我们将经证实的复发性脑出血病例(n = 124)作为金标准,来评估基于登记系统的复发性脑出血识别算法的性能。对于每个队列成员,我们分别根据DSR和DNPR追踪研究期内复发性脑出血事件(ICD-10编码I61)。对于每个登记系统,我们测试了具有不同长度(7天至360天)的空白期(BP)的算法,即索引脑出血后紧接着的一段时期,在此期间忽略结局事件。返回阳性预测值(PPV)≥80%的最短BP算法被认为是最优算法。我们还计算了每种算法的阴性预测值(NPV)、敏感性和特异性以及所有比例的[95%置信区间]。

结果

DSR的最优算法(BP为30天)的PPV为89.5% [82.2 - 94.0],NPV为98.8% [98.2 - 99.1],敏感性为75.8% [67.6 - 82.5],特异性为99.5% [99.2 - 99.7]。DNPR的最优算法(BP为120天)的PPV为80.6% [71.7 - 87.2],NPV为98.1% [97.5 - 98.6],敏感性为63.7% [55.0 - 71.6],特异性为99.2% [98.8 - 99.5]。

结论

简单算法能准确识别DSR和DNPR中的复发性脑出血。与DNPR相比,DSR在更短的BP下实现了更高的PPV和敏感性。所提出的算法有助于有效利用DSR和DNPR进行复发性脑出血的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b156/8517414/0874493f4626/CLEP-13-949-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验