Suppr超能文献

机器学习在脑电图用于原发性进行性失语诊断中的应用:一项初步研究。

Application of Machine Learning to Electroencephalography for the Diagnosis of Primary Progressive Aphasia: A Pilot Study.

作者信息

Moral-Rubio Carlos, Balugo Paloma, Fraile-Pereda Adela, Pytel Vanesa, Fernández-Romero Lucía, Delgado-Alonso Cristina, Delgado-Álvarez Alfonso, Matias-Guiu Jorge, Matias-Guiu Jordi A, Ayala José Luis

机构信息

Department of Computer Arquitecture and Automation, Faculty of Informatics, Universidad Complutense de Madrid, 28040 Madrid, Spain.

Department of Neurophysiology, Institute of Neuroscience, Hospital Clínico San Carlos (IdISCC), Universidad Complutense de Madrid, 28040 Madrid, Spain.

出版信息

Brain Sci. 2021 Sep 24;11(10):1262. doi: 10.3390/brainsci11101262.

Abstract

. Primary progressive aphasia (PPA) is a neurodegenerative syndrome in which diagnosis is usually challenging. Biomarkers are needed for diagnosis and monitoring. In this study, we aimed to evaluate Electroencephalography (EEG) as a biomarker for the diagnosis of PPA. . We conducted a cross-sectional study with 40 PPA patients categorized as non-fluent, semantic, and logopenic variants, and 20 controls. Resting-state EEG with 32 channels was acquired and preprocessed using several procedures (quantitative EEG, wavelet transformation, autoencoders, and graph theory analysis). Seven machine learning algorithms were evaluated (Decision Tree, Elastic Net, Support Vector Machines, Random Forest, K-Nearest Neighbors, Gaussian Naive Bayes, and Multinomial Naive Bayes). . Diagnostic capacity to distinguish between PPA and controls was high (accuracy 75%, F1-score 83% for kNN algorithm). The most important features in the classification were derived from network analysis based on graph theory. Conversely, discrimination between PPA variants was lower (Accuracy 58% and F1-score 60% for kNN). . The application of ML to resting-state EEG may have a role in the diagnosis of PPA, especially in the differentiation from controls. Future studies with high-density EEG should explore the capacity to distinguish between PPA variants.

摘要

原发性进行性失语(PPA)是一种神经退行性综合征,其诊断通常具有挑战性。诊断和监测需要生物标志物。在本研究中,我们旨在评估脑电图(EEG)作为PPA诊断的生物标志物。 我们进行了一项横断面研究,纳入了40例PPA患者,分为非流利型、语义型和音韵型变异型,以及20名对照者。采集了32通道的静息态脑电图,并使用多种程序(定量脑电图、小波变换、自动编码器和图论分析)进行预处理。评估了七种机器学习算法(决策树、弹性网络、支持向量机、随机森林、K近邻、高斯朴素贝叶斯和多项式朴素贝叶斯)。 区分PPA和对照者的诊断能力较高(kNN算法的准确率为75%,F1分数为83%)。分类中最重要的特征来自基于图论的网络分析。相反,PPA变异型之间的区分度较低(kNN的准确率为58%,F1分数为60%)。 将机器学习应用于静息态脑电图可能在PPA的诊断中发挥作用,特别是在与对照者的鉴别方面。未来使用高密度脑电图的研究应探索区分PPA变异型的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e04/8534262/dd5376dde8f5/brainsci-11-01262-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验