Suppr超能文献

基于纹理的深度学习在3T多参数磁共振成像前列腺癌分类中的应用:与基于PI-RADS的分类方法比较

Textured-Based Deep Learning in Prostate Cancer Classification with 3T Multiparametric MRI: Comparison with PI-RADS-Based Classification.

作者信息

Liu Yongkai, Zheng Haoxin, Liang Zhengrong, Miao Qi, Brisbane Wayne G, Marks Leonard S, Raman Steven S, Reiter Robert E, Yang Guang, Sung Kyunghyun

机构信息

Department of Radiological Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.

Physics and Biology in Medicine IDP, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Diagnostics (Basel). 2021 Sep 28;11(10):1785. doi: 10.3390/diagnostics11101785.

Abstract

The current standardized scheme for interpreting MRI requires a high level of expertise and exhibits a significant degree of inter-reader and intra-reader variability. An automated prostate cancer (PCa) classification can improve the ability of MRI to assess the spectrum of PCa. The purpose of the study was to evaluate the performance of a texture-based deep learning model (Textured-DL) for differentiating between clinically significant PCa (csPCa) and non-csPCa and to compare the Textured-DL with Prostate Imaging Reporting and Data System (PI-RADS)-based classification (PI-RADS-CLA), where a threshold of PI-RADS ≥ 4, representing highly suspicious lesions for csPCa, was applied. The study cohort included 402 patients (60% ( = 239) of patients for training, 10% ( = 42) for validation, and 30% ( = 121) for testing) with 3T multiparametric MRI matched with whole-mount histopathology after radical prostatectomy. For a given suspicious prostate lesion, the volumetric patches of T2-Weighted MRI and apparent diffusion coefficient images were cropped and used as the input to Textured-DL, consisting of a 3D gray-level co-occurrence matrix extractor and a CNN. PI-RADS-CLA by an expert reader served as a baseline to compare classification performance with Textured-DL in differentiating csPCa from non-csPCa. Sensitivity and specificity comparisons were performed using Mcnemar's test. Bootstrapping with 1000 samples was performed to estimate the 95% confidence interval (CI) for AUC. CIs of sensitivity and specificity were calculated by the Wald method. The Textured-DL model achieved an AUC of 0.85 (CI [0.79, 0.91]), which was significantly higher than the PI-RADS-CLA (AUC of 0.73 (CI [0.65, 0.80]); < 0.05) for PCa classification, and the specificity was significantly different between Textured-DL and PI-RADS-CLA (0.70 (CI [0.59, 0.82]) vs. 0.47 (CI [0.35, 0.59]); < 0.05). In sub-analyses, Textured-DL demonstrated significantly higher specificities in the peripheral zone (PZ) and solitary tumor lesions compared to the PI-RADS-CLA (0.78 (CI [0.66, 0.90]) vs. 0.42 (CI [0.28, 0.57]); 0.75 (CI [0.54, 0.96]) vs. 0.38 [0.14, 0.61]; all values < 0.05). Moreover, Textured-DL demonstrated a high negative predictive value of 92% while maintaining a high positive predictive value of 58% among the lesions with a PI-RADS score of 3. In conclusion, the Textured-DL model was superior to the PI-RADS-CLA in the classification of PCa. In addition, Textured-DL demonstrated superior performance in the specificities for the peripheral zone and solitary tumors compared with PI-RADS-based risk assessment.

摘要

当前用于解读MRI的标准化方案需要高水平的专业知识,并且在不同读者之间以及同一读者内部都存在显著的变异性。自动前列腺癌(PCa)分类可以提高MRI评估PCa范围的能力。本研究的目的是评估基于纹理的深度学习模型(Textured-DL)区分临床显著性PCa(csPCa)和非csPCa的性能,并将Textured-DL与基于前列腺影像报告和数据系统(PI-RADS)的分类(PI-RADS-CLA)进行比较,其中应用PI-RADS≥4的阈值来表示高度可疑的csPCa病变。研究队列包括402例患者(60%(n = 239)用于训练,10%(n = 42)用于验证,30%(n = 121)用于测试),这些患者均接受了3T多参数MRI检查,并在前列腺癌根治术后进行了全切片组织病理学检查。对于给定的可疑前列腺病变,裁剪T2加权MRI和表观扩散系数图像的体积块,并将其用作Textured-DL的输入,该模型由一个3D灰度共生矩阵提取器和一个卷积神经网络组成。由专业读者进行的PI-RADS-CLA作为基线,用于比较Textured-DL在区分csPCa和非csPCa方面的分类性能。使用McNemar检验进行敏感性和特异性比较。进行1000次抽样的自助法以估计AUC的95%置信区间(CI)。敏感性和特异性的CI通过Wald方法计算。Textured-DL模型在PCa分类中的AUC为0.85(CI [0.79, 0.91]),显著高于PI-RADS-CLA(AUC为0.73(CI [0.65, 0.80]);P < 0.05),并且Textured-DL与PI-RADS-CLA之间的特异性存在显著差异(0.70(CI [0.59, 0.82])对0.47(CI [0.35, 0.59]);P < 0.05)。在亚分析中,与PI-RADS-CLA相比,Textured-DL在外周带(PZ)和孤立肿瘤病变中的特异性显著更高(0.78(CI [0.66, 0.90])对0.42(CI [0.28, 0.57]);0.75(CI [0.54, 0.96])对0.38 [0.14, 0.61];所有P值< 0.05)。此外,在PI-RADS评分为3的病变中,Textured-DL表现出92%的高阴性预测值,同时保持58%的高阳性预测值。总之,Textured-DL模型在PCa分类方面优于PI-RADS-CLA。此外,与基于PI-RADS的风险评估相比,Textured-DL在外周带和孤立肿瘤的特异性方面表现出更优的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8f9/8535024/0a7b9e740ff9/diagnostics-11-01785-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验