Owais Muhammad, Baek Na Rae, Park Kang Ryoung
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea.
J Pers Med. 2021 Oct 7;11(10):1008. doi: 10.3390/jpm11101008.
Early and accurate detection of COVID-19-related findings (such as well-aerated regions, ground-glass opacity, crazy paving and linear opacities, and consolidation in lung computed tomography (CT) scan) is crucial for preventive measures and treatment. However, the visual assessment of lung CT scans is a time-consuming process particularly in case of trivial lesions and requires medical specialists.
A recent breakthrough in deep learning methods has boosted the diagnostic capability of computer-aided diagnosis (CAD) systems and further aided health professionals in making effective diagnostic decisions. In this study, we propose a domain-adaptive CAD framework, namely the dilated aggregation-based lightweight network (DAL-Net), for effective recognition of trivial COVID-19 lesions in CT scans. Our network design achieves a fast execution speed (inference time is 43 ms on a single image) with optimal memory consumption (almost 9 MB). To evaluate the performances of the proposed and state-of-the-art models, we considered two publicly accessible datasets, namely COVID-19-CT-Seg (comprising a total of 3520 images of 20 different patients) and MosMed (including a total of 2049 images of 50 different patients).
Our method exhibits average area under the curve (AUC) up to 98.84%, 98.47%, and 95.51% for COVID-19-CT-Seg, MosMed, and cross-dataset, respectively, and outperforms various state-of-the-art methods.
These results demonstrate that deep learning-based models are an effective tool for building a robust CAD solution based on CT data in response to present disaster of COVID-19.
早期准确检测与新冠病毒病相关的表现(如肺计算机断层扫描(CT)中的肺通气良好区域、磨玻璃影、铺路石样改变和线状影以及实变)对于预防措施和治疗至关重要。然而,肺CT扫描的视觉评估是一个耗时的过程,尤其是对于微小病变,并且需要医学专家。
深度学习方法的最新突破提高了计算机辅助诊断(CAD)系统的诊断能力,并进一步帮助卫生专业人员做出有效的诊断决策。在本研究中,我们提出了一种域自适应CAD框架,即基于扩张聚合的轻量级网络(DAL-Net),用于在CT扫描中有效识别微小的新冠病毒病病变。我们的网络设计实现了快速的执行速度(单张图像的推理时间为43毫秒)和最佳的内存消耗(几乎9兆字节)。为了评估所提出的模型和现有最先进模型的性能,我们考虑了两个公开可用的数据集,即新冠病毒病CT分割数据集(共包含20名不同患者的3520张图像)和莫斯科医学数据集(共包含50名不同患者的2049张图像)。
我们的方法在新冠病毒病CT分割数据集、莫斯科医学数据集和跨数据集上的曲线下平均面积(AUC)分别高达98.84%、98.47%和95.51%,优于各种现有最先进的方法。
这些结果表明,基于深度学习的模型是一种有效的工具,可用于基于CT数据构建强大的CAD解决方案,以应对当前的新冠病毒病疫情。