文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Biofilm-Resistant Nanocoatings Based on ZnO Nanoparticles and Linalool.

作者信息

Spirescu Vera Alexandra, Șuhan Raluca, Niculescu Adelina-Gabriela, Grumezescu Valentina, Negut Irina, Holban Alina Maria, Oprea Ovidiu-Cristian, Bîrcă Alexandra Cătălina, Vasile Bogdan Ștefan, Grumezescu Alexandru Mihai, Bejenaru Ludovic Everard, Mogoşanu George Dan, Bejenaru Cornelia, Balaure Paul Cătălin, Andronescu Ecaterina, Mogoantă Laurenţiu

机构信息

Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania.

Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania.

出版信息

Nanomaterials (Basel). 2021 Sep 29;11(10):2564. doi: 10.3390/nano11102564.


DOI:10.3390/nano11102564
PMID:34685006
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8540015/
Abstract

Biofilms represent an increasing challenge in the medical practice worldwide, imposing a serious threat to public health. As bacterial strains have developed antibiotic resistance, researcher's attention has been extensively focused on developing more efficient antimicrobial strategies. In this context, the present study reports the synthesis, physicochemical characterization, ex vivo biodistribution, and in vitro evaluation of the capacity of nanostructured surfaces based on zinc oxide (ZnO) and biologically active molecules to modulate clinically relevant microbial biofilms. ZnO nanoparticles (NPs) were synthesized through a co-precipitation method without thermal treatment. The matrix-assisted pulsed laser evaporation (MAPLE) was applied for preparing nanostructured coatings based on ZnO NPs surface modified with linalool that were further characterized by X-ray diffraction (XRD), thermogravimetric analysis with differential scanning calorimetry (TGA-DSC), scanning electron microscopy (SEM), transmission electron microscopy with selected area electron diffraction (TEM-SAED), Fourier-transform infrared spectroscopy (FT-IR), and infrared microscopy (IRM). Histological analyses carried out at 7 days and 14 days after the intraperitoneal administration of linalool modified ZnO NPs revealed the absence of the latter from the brain, kidney, liver, lung, myocardium, and pancreas. Through in vitro assays on prokaryotic cells, it was proven that ZnO coatings hinder microbial biofilm formation of both Gram-positive and Gram-negative bacteria strains.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/e5269059c9d3/nanomaterials-11-02564-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/b864f1ce5b67/nanomaterials-11-02564-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/a7611d32cc0b/nanomaterials-11-02564-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/ff34a0152d04/nanomaterials-11-02564-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/c517a6ca2168/nanomaterials-11-02564-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/e15891b51624/nanomaterials-11-02564-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/dc97720f3850/nanomaterials-11-02564-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/885df7b04831/nanomaterials-11-02564-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/b1c8fc0a9aba/nanomaterials-11-02564-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/09633f33f626/nanomaterials-11-02564-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/04b38393c567/nanomaterials-11-02564-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/36efcb3e3438/nanomaterials-11-02564-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/7d6083fe460b/nanomaterials-11-02564-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/10105db6ed00/nanomaterials-11-02564-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/d07689e39588/nanomaterials-11-02564-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/bc0c325f887f/nanomaterials-11-02564-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/5881f1ea6c60/nanomaterials-11-02564-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/f2bad295ba8c/nanomaterials-11-02564-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/25585955376a/nanomaterials-11-02564-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/c4798061c329/nanomaterials-11-02564-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/db5434c4f18a/nanomaterials-11-02564-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/e5269059c9d3/nanomaterials-11-02564-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/b864f1ce5b67/nanomaterials-11-02564-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/a7611d32cc0b/nanomaterials-11-02564-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/ff34a0152d04/nanomaterials-11-02564-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/c517a6ca2168/nanomaterials-11-02564-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/e15891b51624/nanomaterials-11-02564-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/dc97720f3850/nanomaterials-11-02564-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/885df7b04831/nanomaterials-11-02564-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/b1c8fc0a9aba/nanomaterials-11-02564-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/09633f33f626/nanomaterials-11-02564-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/04b38393c567/nanomaterials-11-02564-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/36efcb3e3438/nanomaterials-11-02564-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/7d6083fe460b/nanomaterials-11-02564-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/10105db6ed00/nanomaterials-11-02564-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/d07689e39588/nanomaterials-11-02564-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/bc0c325f887f/nanomaterials-11-02564-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/5881f1ea6c60/nanomaterials-11-02564-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/f2bad295ba8c/nanomaterials-11-02564-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/25585955376a/nanomaterials-11-02564-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/c4798061c329/nanomaterials-11-02564-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/db5434c4f18a/nanomaterials-11-02564-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5530/8540015/e5269059c9d3/nanomaterials-11-02564-g021.jpg

相似文献

[1]
Biofilm-Resistant Nanocoatings Based on ZnO Nanoparticles and Linalool.

Nanomaterials (Basel). 2021-9-29

[2]
PEG-Functionalized Magnetite Nanoparticles for Modulation of Microbial Biofilms on Voice Prosthesis.

Antibiotics (Basel). 2021-12-29

[3]
MAPLE Coatings Embedded with Essential Oil-Conjugated Magnetite for Anti-Biofilm Applications.

Materials (Basel). 2021-3-25

[4]
Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity.

J Photochem Photobiol B. 2018-1

[5]
Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity.

J Photochem Photobiol B. 2018-1

[6]
Phyto-assisted synthesis of zinc oxide nanoparticles for developing antibiofilm surface coatings on central venous catheters.

Front Chem. 2023-3-23

[7]
In vitro and In vivo toxicity assessment of phytofabricated ZnO nanoparticles showing bacteriostatic effect and larvicidal efficacy against Culex quinquefasciatus.

J Photochem Photobiol B. 2019-1-30

[8]
Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics.

Sci Rep. 2016-6-28

[9]
Bioactive Hydroxyapatite-Magnesium Phosphate Coatings Deposited by MAPLE for Preventing Infection and Promoting Orthopedic Implants Osteointegration.

Materials (Basel). 2022-10-20

[10]
Antibiofilm Coatings Based on PLGA and Nanostructured Cefepime-Functionalized Magnetite.

Nanomaterials (Basel). 2018-8-21

引用本文的文献

[1]
Targeting ESKAPE pathogens with ZnS and Au@ZnS Core-Shell nanoconjugates for improved biofilm control.

Sci Rep. 2025-7-1

[2]
ZnO Nanoparticles Normalize Pancreas Function via the GLP-1 and Oxidative Stress Pathways in Diabetic Rats.

Biol Trace Elem Res. 2025-6-27

[3]
Antibacterial Properties of PMMA/ZnO(NanoAg) Coatings for Dental Implant Abutments.

Materials (Basel). 2025-1-15

[4]
Zinc Oxide-Loaded Recycled PET Nanofibers for Applications in Healthcare and Biomedical Devices.

Polymers (Basel). 2024-12-28

[5]
Electrophoretic deposition of polyvinyl alcohol, C-H NRs along with moringa on an SS substrate for orthopedic implant applications.

RSC Adv. 2024-8-23

[6]
ZnO Nanoparticles Enhance the Antimicrobial Properties of Two-Sided-Coated Cotton Textile.

Nanomaterials (Basel). 2024-7-28

[7]
Iron-tannic acid nano-coating: A promising treatment approach for enhancing antibiotic resistance.

Saudi Pharm J. 2024-5

[8]
Nanostructured Coatings Based on Graphene Oxide for the Management of Periprosthetic Infections.

Int J Mol Sci. 2024-2-17

[9]
Influence of the Alcohols on the ZnO Synthesis and Its Properties: The Photocatalytic and Antimicrobial Activities.

Pharmaceutics. 2022-12-18

[10]
Nanoparticles for Antimicrobial Agents Delivery-An Up-to-Date Review.

Int J Mol Sci. 2022-11-10

本文引用的文献

[1]
Modulation of Quorum Sensing and Biofilms in Less Investigated Gram-Negative ESKAPE Pathogens.

Front Microbiol. 2021-7-29

[2]
ZnO Nanoparticles-Modified Dressings to Inhibit Wound Pathogens.

Materials (Basel). 2021-6-4

[3]
Antimicrobial Activity of Selected Essential Oils against Selected Pathogenic Bacteria: In Vitro Study.

Antibiotics (Basel). 2021-5-8

[4]
Smart Coatings Prepared via MAPLE Deposition of Polymer Nanocapsules for Light-Induced Release.

Molecules. 2021-5-6

[5]
MAPLE Coatings Embedded with Essential Oil-Conjugated Magnetite for Anti-Biofilm Applications.

Materials (Basel). 2021-3-25

[6]
Engineering bioactive surfaces on nanoparticles and their biological interactions.

Sci Rep. 2020-11-12

[7]
The Roles of Microbial Cell-Cell Chemical Communication Systems in the Modulation of Antimicrobial Resistance.

Antibiotics (Basel). 2020-11-6

[8]
Strategies for antimicrobial peptide coatings on medical devices: a review and regulatory science perspective.

Crit Rev Biotechnol. 2021-2

[9]
Magnetite Nanoparticles and Essential Oils Systems for Advanced Antibacterial Therapies.

Int J Mol Sci. 2020-10-5

[10]
Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant staphylococcus aureus.

Int J Med Microbiol. 2020-6-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索